
Terminology

.. Reference: Section 4.2, 5.1

Time-sharing / multiprogramming
Typical proc. alternates between CPU bursts and I/O bursts
To maximize CPU utilization:

multiple processes are kept in memory simultaneously

when one process is waiting, another process executes

CPU bound process: spends more time doing computations,
generates I/O requests infrequently
I/O bound process: spends more time doing I/O than computing

Job queue: contains all processes in the system
Ready queue: contains all processes that reside in main memory and
are ready to run
Device queue: contains all procs. waiting for a particular device

Scheduling February 3, 2016 1 / 18

Preemptive vs. non-preemptive scheduling

Process switch can occur when a process
1. needs to wait for some resource (sleeps)

2. exits

3. returns from kernel mode to user mode but is not the most eligible
process to run

Non-preemptive scheduling: scheduling takes place only in 1
and 2

when a process gets the CPU, it keeps it until it sleeps/exits

used in MS Windows (?)

Preemptive scheduling: case 3 is also permissible

Scheduling February 3, 2016 2 / 18

First-come first-served

.. Reference: Section 5.3.1Method:
1. Maintain a FIFO queue.
2. When a process enters the ready queue, it is placed at the end of

the queue.
3. When the CPU is free, it is allocated to the process at the head of

the queue.

Properties:
Non-preemptive
Unsuitable for time-sharing systems (∵ each user should get a
share of the CPU at regular intervals)
Average waiting time is not minimal
Convoy effect: many processes may have to wait for one long
process to finish
Example: 1 CPU-bound proc. + many I/O bound procs.

Scheduling February 3, 2016 3 / 18

First-come first-served

Example:

Ready processes Burst time

P1 24

P2 3

P3 3
Processes arrive in the order P1, P2, P3

Gantt chart:

P1 P2 P3

Average waiting time: (0 + 24 + 27)/3 = 17ms

Scheduling February 3, 2016 4 / 18

Shortest job first

.. Reference: Section 5.3.2Method:
1. When the CPU is available, assign it to the process with the

shortest next CPU burst.
2. Break ties on a FCFS basis.

Properties:
Optimal in terms of average waiting time
Suitable for job scheduling in a batch system
(use time limit specified by user at time of submission)
Length of the next CPU request is generally not known

Pre-emptive SJF: (shortest remaining time first)
1. When a new process arrives at the ready queue, compare its CPU

burst with remaining time for current process.
2. If new process has shorter burst, preempt current process.

Scheduling February 3, 2016 5 / 18

Shortest job first

Example:

Ready processes Arrival time Burst time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Gantt chart:

P1 P2 P4 P3

Average waiting time: (0 + 7 + 15 + 9)/4 = 7.75ms
(compare pre-emptive version, FCFS)

Scheduling February 3, 2016 6 / 18

Shortest job first

CPU burst prediction
Some function of the measured lengths of previous CPU bursts
may be used
Exponential average:

τn+1 = αtn + (1− α)τn

= αtn + α(1− α)tn−1 + . . .+ (1− α)jαtn−j + . . .

+(1− α)n+1τ0

tn - length of n-th CPU burst
τn+1 - predicted value for the next CPU burst
α - relative weight given to recent history

Scheduling February 3, 2016 7 / 18

Priority scheduling

..
Reference: Section 5.3.3Method:

1. Compute a priority for each process.

Internal priorities: computed using time limits, memory
requirements, ratio of avg. I/O burst to avg. CPU burst, etc.

External priorities: computed on the basis of external political /
administrative factors

2. Allocate CPU to process with highest priority.
3. Break ties on a FCFS basis.

Properties:
Can be preemptive or non-preemptive (cf. SJF)
Starvation (indefinite blocking) may occur
(if high priority processes keep arriving, low priority process may
have to wait indefinitely for CPU)

Scheduling February 3, 2016 8 / 18

Priority scheduling

Priority scheduling with aging: priority may be increased in
proportion to waiting time to prevent starvation

Example:

Ready processes Burst time Priority

P1 10 3

P2 1 1

P3 2 3

P4 1 4

P5 5 2
(low numbers ⇒high priority)

Average waiting time: 8.2ms

Scheduling February 3, 2016 9 / 18

Round robin

..

Reference: Section 5.3.4

Time quantum (or time slice): maximum interval of time between two
invocations of the scheduler

a process can be allocated the CPU for one quantum at one time
usually between 10–100ms

Method:
1. Maintain a FIFO queue of ready processes.
2. Allocate CPU to first process from queue; set timer for 1 time

quantum.
3. If running process releases CPU, or timer expires:

preempt current process and switch context to the next process in
the ready queue;
add previously running process to tail of ready queue.

Scheduling February 3, 2016 10 / 18

Round robin

Example:

Ready processes Burst time

P1 24

P2 3

P3 3
Time quantum = 4ms

Average waiting time: 5.66ms

Properties:

Suitable for time-sharing systems (∵ every process gets the CPU for q time units
after waiting for (n− 1)q time units)

Duration of time quantum:

large time quantum ⇒ RR → FCFS

small time quantum ⇒ context-switching overhead ↑

Scheduling February 3, 2016 11 / 18

Multilevel queue

..
Reference: Section 5.3.5

Method:
1. Partition the queue into several separate queues; assign a fixed

priority value to each.
2. Assign each process to some fixed queue, based on its properties.

Example: system procs. / interactive procs. / interactive editing
procs. / batch procs. / student procs.

3. Select a queue based on:
fixed priority, OR

priority-based proportional time slicing.

4. Select a job from the queue using a suitable scheduling algorithm
(e.g. FCFS, RR).

Properties:
Preemptive

Scheduling February 3, 2016 12 / 18

Multilevel feedback queue

.. Reference: Section 5.3.6

Processes may be moved between scheduling queues
Parameters:

of queues

scheduling algorithm / time slice for each queue

initial queue selection policy

promotion/demotion policies

Example:
3 queues, Q0, Q1, Q2

scheduling policies:
Q0 = RR (quantum = 8ms) Q1 = RR (quantum = 16ms) Q2 = FCFS
on entry to ready queue, processes assigned to Q0

on exit from Q0, process is placed at tail of Q1

on exit from Q1, process is placed at tail of Q2

OPTIONAL: if process waits too long in Q2, promote it to Q1

Scheduling February 3, 2016 13 / 18

Scheduling criteria

.. Reference: Section 5.2

CPU utilization
Throughput: number of processes that are completed per unit
time

long processes ⇒ throughput ↓
short processes ⇒ throughput ↑

Turnaround time: interval from the time of submission of a process
to the time of completion
Waiting time: total amount of time spent by a process in the ready
queue
Response time: time from the submission of a request until the
first response is produced
(amount of time taken to start responding, not including the time
taken to complete the output)

NOTE: maximum (minimum)/average/variance may be suitable for evaluation
Scheduling February 3, 2016 14 / 18

Real-time scheduling

Scheduling February 3, 2016 15 / 18

Real-time scheduling

.. Reference: Section 5.5Hard real-time systems:
Critical tasks must be completed within a guaranteed amount of
time
Resource reservation:

processes are submitted with deadlines

scheduler may admit the process and guarantee completion, or
reject

Duration of operating system functions must be predictable and
bounded
Consists of special-purpose software running on dedicated
hardware

Soft real-time systems:
Critical processes receive priority over “ordinary” processes
May be implemented as a general-purpose system

Scheduling February 3, 2016 16 / 18

Real-time scheduling

Preemptible vs. non-preemptible kernels:
Non-preemptible kernels

context switch can happen only at restricted points
completion of system call/interrupt
sleep()

specially inserted preemption points

delays may be unpredictable

easier to implement

Preemptible kernels
suitable for soft real-time systems

harder to implement

Scheduling February 3, 2016 17 / 18

Real-time scheduling

Priority inversion
High priority process may have to wait for resource held by a low
priority process
Priority inheritance: processes that are accessing resources
required by high priority process inherit the high priority until they
release the resource

Scheduling February 3, 2016 18 / 18

