
DevelopersHow To

The JUnit Framework can be easily integrated with Eclipse.
Unit testing accelerates programming speed.

While software testing is generally performed by the
professional software tester, unit testing is often
performed by the software developers working on

the project, at that point of time. Unit testing ensures that the
specific function is working perfectly. It also reduces software
development risks, cost and time. Unit testing is performed
by the software developer during the construction phase of
the software development life cycle. The major benefit of
unit testing is that it reduces the construction errors during
software development, thus improving the quality of the
product. Unit testing is about testing classes and methods.

What is JUnit?
JUnit is a testing tool for the Java programming language. It
is very helpful when you want to test each unit of the project
during the software development process.

How to perform unit testing using the JUnit
testing tool
To perform JUnit testing in Java, first of all, you have to
install the Eclipse editor. Installation of the latest version is
recommended. You can download the Eclipse IDE from the
following link: http://eclipse.org/downloads/.

In the Eclipse editor, you can write any code. For
example, let’s suppose that I want to test the following code:

Code-1

1 package com;

2

3 public class Junit {

4

5	 public String concatenate(String firstName, String

lastName) {

6

7	 	 return firstName + lastName;

8	 }

9

10	 public int multiply(int number1, int number2) {

11

12		 return number1 * number2;

13	 }

14

15 }

After writing Code-1, let’s write two test cases—one for
the concatenate method and the other for the multiply method
of the JUnit class defined in this code. To create JUnit test
cases, you need to click on the Eclipse editor:
File→New→JUnit Test Case

Defining the test case for the concatenate()
method of the JUnit class (Code-1)

Code-2

1 package com;

2 import static org.junit.Assert.*;

3 import org.junit.Test;

4

5 public class ConcatTest {

6

Unit Testing in Java Using
the JUnit Framework

PB  |  July 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  July 2015  |  63

Developers How To

7	 @Test

8	 public void testConcatnate() {

9

10	 	 Junit test = new Junit();

11

12	 	 String result = test.concatenate(“Vikas”,”Kumar”);

13

14	 	 assertEquals(“VikasKumar”, result);

15

16	 }

17

18}

Code-2 is the test case for the concatenate() method defined inside
the JUnit class in Code-1. The annotation @Test at Line 7 is supported
by JUnit version 4. To add JUnit version 4, you can click on Project
directory in the Eclipse IDE and go to Java Build Path, before clicking
on Add Library and then on JUnit, where you select Junit 4.

The assertEquals() method is a predefined method, and it takes
two parameters. The first parameter is called expected output and
the second is original output. If the expected output doesn’t match
the original output, then the test case fails. To run the test cases, right
click the Eclipse code and then click on Run as JUnit Test.

Defining the test case for the multiply() method of
JUnit class (Code-1)

Code-3

1 package com;

2

3 import static org.junit.Assert.*;

4 import org.junit.Test;

5

6 public class MultiplyTest {

7

8	 @Test

9	 public void testMultiply() {

10

11	 	 Junit test = new Junit();

12

13	 	 int result = test.multiply(5, 5);

14

15	 	 assertEquals(25, result);

16	 }

17

18 }

Code-3 is the test case for the multiply() method of the
JUnit class defined above.

Creating a test suite
A test suite is a combination of multiple test cases. To create a
JUnit test suite, you need to click on the following in Eclipse:

File→Other→Java→JUnit→JUnit Test Suite
After creating the JUnit test suite, the code will look like

what is shown in the Code-4 snippet.

Code-4

1 package com;

2

3 import org.junit.runner.RunWith;

4 import org.junit.runners.Suite;

5 import org.junit.runners.Suite.SuiteClasses;

6

7 @RunWith(Suite.class)

8 @SuiteClasses({ ConcatTest.class, MultiplyTest.class })

9 public class AllTests {

10

11 }

Understanding the @Before annotation
The @Before annotation is used to annotate the method
that has to be executed before the actual test method gets
executed. To understand this, let’s look at Code-5.

Code-5

1 package com;

2

3 public class Calculator {

4

5	 public int add(int x, int y) {

6

7	 	 return x + y;

8	 }

9

10	 public int sub(int x, int y) {

11

12		 return x - y;

13

14	 }

15 }

Now let’s create the test case for Code-5. The following code
is the JUnit test case for the Calculator class defined in this code.

Code-6

1 package com;

2

3 import static org.junit.Assert.*;

4 import org.junit.Before;

5 import org.junit.Test;

6

7 public class CaculatorTest {

8

64  |  July 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  July 2015  |  65

DevelopersHow To

9	 Calculator cal;

10

11	 @Before

12	 /*

13	 	 the init() method will be called for each test, such

14 		 testAdd() as well as testSub()

15	 */

16	 public void init() {

17

18	 	 cal = new Calculator();

19

20	 }

21

22	 @Test

23	 public void testAdd() {

24

25		 int x = 10;

26		 int y = 20;

27	 	 assertEquals(30, cal.add(x, y));

28

29	 }

30

31	 @Test

32	 public void testSub() {

33		 int x = 10;

34		 int y = 20;

35	 	 assertEquals(-10, cal.sub(x, y));

36	 }

37

38 }

Parameterised unit test cases using JUnit
If you want to test any method with multiple input values, you
would normally have to write multiple test cases for the same
method. But if you use the parameterised unit testing technique,
you don’t need to write multiple test cases for the same method.

Let’s look at the example of the Calculator class defined
in Code-5. If you have to create parameterised test cases for
the add() method of the Calculator class with multiple inputs,
then consider the following code for that requirement.

Code-7

1 package com.emertxe;

2

3 import static org.junit.Assert.*;

4 import java.util.Arrays;

5 import java.util.Collection;

6 import org.junit.Assert;

7 import org.junit.Before;

8 import org.junit.Test;

9 import org.junit.runner.RunWith;

10 import org.junit.runners.Parameterized;

11 import org.junit.runners.Parameterized.Parameters;

12

13 @RunWith(Parameterized.class)

14 public class AddParamTest {

15

16	 private int expectedResult;

17	 private int firstVal;

18	 private int secondVal;

19	 Calculator cal;

20

21	 @Before

22	 public void init() {

23

24	 	 cal = new Calculator();

25	 }

26

27	 public AddParamTest(int expectedResult, int firstVal, int

secondVal) {

28		 this.expectedResult = expectedResult;

29	 	 this.firstVal = firstVal;

30		 this.secondVal = secondVal;

31	 }

32

33	 @Parameters

34	 public static Collection<Object[]> testData() {

35

36		 Object[][] data = new Object[][] { { 6, 2, 4 }, { 7, 4, 3 },

37	 	 	 	 { 8, 2, 6 } };

38

39	 	 return Arrays.asList(data);

40	 }

41

42	 @Test

43	 public void testAdd() {

44 Assert.assertEquals(expectedResult, cal.add(firstVal,

secondVal));

45	 }

46 }

When the test case written in Code-7 is executed, then an
execution occurs in the following order:
1.	 Parameterised class at Line 11 is executed.
2.	 Static method at Line 32 is executed.
3.	 Instance of AddParamTest class at Line 12 is executed.
4.	 The data {6,2,4}, {7,4,3} and {8,2,6} at Lines 34-35 is

passed to the constructor at Line 24.
5.	 testAdd() method at Line 41 is executed.

By: Vikas Kumar Gautam
The author is a mentor at Emertxe Information Technology (P) Ltd. His
main areas of expertise include application development using Java/
J2EE and Android for both Web and mobile devices. A Sun Certified
Java Professional (SCJP), his interests include acquiring greater
expertise in the application space by learning from the latest happenings
in the industry. He can be reached at vikash_kumar@emertxe.com

64  |  July 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  July 2015  |  65

