
Developers Insight

development
programming

language

language

Sizeof() is used extensively in the C programming
language. It is a compile-time unary operator, which can
be used to compute the size (in bytes) of any data type

of its operands. The operand may be an actual type-specifier
(such as char or ints) or any valid expression. The sizeof()
operator returns the total memory allocated for a particular
object in terms of bytes. The resultant type of the sizeof()
operator is size_t. Sizeof() can be applied both for primitive
data types (such as char, ints, floats, etc) including pointers
and also for the compound data types (such as structures,
unions, etc).

Usage
The sizeof() operator can be used in two different cases
depending upon the operand types. Let me elaborate this with
syntax, examples and sample codes.

Case 1: When the operand is a type-name
When sizeof() is used with ‘type-name’ as the operand (such
as char, int, float, double, etc), it returns the amount of
memory that will be used by an object of that type. In this

case, the operand should be enclosed within parenthesis. The
sizeof operator is used when the operand is a type-name as
shown in Table 1.

Illustration: The sample demo code is shown below
(Code 1), and the output of the code when I run it in my
system is shown in Figure 1.

Code 1
 1 #include <stdio.h>

 2 #include <stddef.h>

 3

 4 int main()

 5 {

 6 printf(“Sizeof(char) : %lu\n”, (long unsigned)

sizeof(char));

 7 printf(“Sizeof(int) : %lu\n”, (long unsigned)

sizeof(int));

 8 printf(“Sizeof(float) : %lu\n”, (long unsigned)

sizeof(float));

 9 printf(“Sizeof(double) : %lu\n”, (long unsigned)

sizeof(double));

In C programming, the unary operator sizeof() returns the size of its operand in bytes. The
sizeof() operator is discussed in detail in this article, along with illustrative examples of code.

Face-off with Sizeof()

68 | April 2015 | OpEN SOUrCE FOr YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OpEN SOUrCE FOr YOU | April 2015 | 69

DevelopersInsight

 10 return 0;

 11 }

 Note 1: The return value of the sizeof() operator is
implementation-defined, and its type (an unsigned integer type)
is size_t, defined in <stddef.h>.

 Note 2: C99 has included %zu as a type specifier
 for size_t. But for older compilers, %z will fail. Hence, use
%lu or %llu along with a typecasting to achieve portability
of the code across various platforms.

Case 2: When the operand is an expression
When sizeof() is used with expression as an operand, the
operand can be enclosed with or without parenthesis.
The syntax of how the sizeof() operator is used preceding
the expression is shown in Table 2 along with some
examples.

Illustration: The sample demo code is shown in the Code
2 snippet, and the output of the code when I run it in my
system is shown in Figure 2.

Code 2
 1 #include <stdio.h>

 2 #include <stddef.h>

 3

 4 int main()

 5 {

 6 int a = 10;

 7

 8 double d = 12.34;

 9

 10 printf(“Sizeof(a + d): %lu\n”, (long unsigned)

sizeof(a + d));

 11

 12 return 0;

 13 }

From the above demo code, it is very clear that when
the sizeof() operator is applied to an expression, it yields a
result that is the same as if it had been applied to the type-
name of the resultant of the expression. Since, at compile
time the compiler analyses the expression to determine its
type, but it will never evaluate the expression which takes
place at runtime.

In the example shown in Code 2, ‘a’ is of int type and‘d’
is of double type. When type conversion is applied, as usual,
the lower rank data type is promoted to a higher rank data
type and the resultant data type is nothing but a double in
our case; hence, sizeof(a + d) yields sizeof(double) which
is 8 bytes as shown in Figure 2. In general, if the operand
contains the operators that perform type conversions, the
compiler considers these conversions in determining the
type of the expression.

Behaviour
The sizeof() operator behaves differently in comparison with
other operators. In this article, let me point out the uniqueness
of this operator by taking two real-time programming
examples. The first is about compile-time behaviour and the
second one is about runtime behaviour.

Case 1: Compile-time behaviour
To start with, let us consider the simple code as shown in the
Code 3 snippet.

Figure 1: Output of the demo program shown in Code 1

Figure 2: Output of the demo program shown in Code 2

Syntax Examples

Sizeof (type-name) 1. sizeof (char)
2. sizeof (int)
3. sizeof (float)
4. sizeof (double)
5. sizeof (12.5)
6. sizeof (‘A’) etc...

Table 1: Syntax with some commonly used examples

Syntax Examples

Sizeof (expression)

OR

Sizeof expression

1. sizeof (i++)

2. sizeof (a+b) etc...

Table 2: Syntax with some commonly used examples

Figure 3: Output of the demo program shown in Code 3

68 | April 2015 | OpEN SOUrCE FOr YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OpEN SOUrCE FOr YOU | April 2015 | 69

Developers Insight

Code 3
 1 #include <stdio.h>

 2 #include <stddef.h>

 3

 4 int main()

 5 {

 6 int i = 10;

 7

 8 size_t size = sizeof(i++);

 9

 10 printf(“Size of i : %lu\n”, (long unsigned)

 size);

 11

 12 printf(“value of i : %d\n”, i);

 13

 14 return 0;

 15 }

Can you guess what the output of the above mentioned program
will be? At first glance, anybody would say it is 4 (assuming the
sizeof(int) is 4 bytes) and 11. But, when I run the program in my
system, it shows 4 and 10 (refer Figure 3 for output).

Why are we getting the value of variable ‘i’ as 10 instead
of 11? Here is the reason.

The sizeof operator is the only one in C, which is
evaluated at compile time, where sizeof(i++) in our example
is replaced by the value 4 during compile time itself. We
can validate this by referring to Figure 4, which contains the
assembly code equivalent to the sizeof(i++) in C.

 Note: To obtain the assembly code as shown in Figure
4, follow the steps shown below:
+ gcc -g filename.c (in our case, the file name is sizeof_run.c)
+ objdump -S output_file (in our case, the output file is a.out)

From Figure 4, we can see that sizeof() is completely
evaluated at compile time (the exception is gcc, which
supports zero-sized structures as a GNU extension, which
is evaluated at the runtime). And the whole sizeof(i++) is
replaced by the constant value 4, which is highlighted in the
box. Hence, there are no assembly instructions for i++ at all,
which is supposed to be evaluated at the runtime.

Case 2: Runtime behaviour
As mentioned earlier, sizeof() is the only operator in C, which
is evaluated at the compile time. But, there is an exception for
this in C99 standards, for variable length arrays.

To start with, let us consider the following code (Code 4):

Code 4
 1 #include <stdio.h>

 2 #include <stddef.h>

 3

 4 int main()

 5 {

 6 unsigned int size;

 7 size_t array_size;

 8

 9 printf(“Enter the size:”);

 10 scanf(“%u”, &size);

 11

 12 //Declaring the variable length array

 13 int array[size];

 14

 15 //Finding the size of array

 16 array_size = sizeof(array);

 17

 18 printf(“Size of array : %lu\n”, (long unsigned)

 array_size);

 19

 20 return 0;

 21 }

Let us see the output, when the above code is compiled
and run (shown in Figure 5).

From the above output it is very clear that the sizeof()
operator is evaluated at runtime. We can observe the
equivalent assembly code generated by the compiler as shown
in Figure 6.

Also, note the difference between the assembly code in
Figures 4 and 6.

The need for sizeof()

Case 1: Auto determination of the number of
elements in an array
To compute the number of elements of the array
automatically, depending on the data-type of the element, the
sizeof() operator comes in handy.

Figure 4: Assembly code generated by the compiler for Code 3

70 | April 2015 | OpEN SOUrCE FOr YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OpEN SOUrCE FOr YOU | April 2015 | 71

DevelopersInsight

For an explanation, let us consider the code snippet given
below:

1 #include <stdio.h>

 2 #include <stddef.h>

 3

 4 int main()

 5 {

 6 int array[] = {10, 20, 30, 40, 50};

 7

 8 size_t i;

 9

 10 for(i = 0; i < sizeof(array) / sizeof(array[0]);

i++)

 11 {

 12 //some code

 13 }

 14 }

In the example shown above, at line number 10, by using

the sizeof() operator the number of elements is automatically
computed.

The sizes of primitive data types in C are implementation
defined. For example, the sizeof(long) on 32-bit architecture
may vary from that on 64-bit architecture. So, when we
decide statically the sizeof(long) as 4 bytes wide on 32-bit
architecture, and when the same code is ported to 64-bit
architecture, the results may go wrong. So, in order to avoid
the portability issue, it is a best practice to use sizeof() to
compute the sizeof variables or arrays, depending on the exact
size of a particular data type.

Case 2: To allocate a block of memory
dynamically of a particular data type
In case of dynamic memory allocation of an array, sizeof()
plays an important role. For example, if we want to
allocate a block of memory that is big enough to hold
‘5’ integers in an array, sizeof comes in handy and is a
great help, since we do not know the exact sizeof(int) to
dynamically allocate the memory using malloc function for
a particular architecture.

 int *iptr = malloc(5* sizeof(int));

In the above example, we are mallocing the block of
memory, which is equal to the number of bytes of type

int, multiplied by 5, ensuring sufficient space for all five
ints is allocated.

Case 3: To determine the sizeof compound
data types
Sometimes, it is very difficult to predict the sizes of compound
data types such as structures, due to structure padding, and to
predict the size of unions. Sizeof() is of great use here.

Cases when sizeof() will not work
The sizeof operator will not work when applied to the
following cases:
 � A bit field
 � A function type
 � An incomplete type (such as void)
 � Zero-sized array (except in GCC, which supports zero-

sized structures as a GNU extension).

sizeof() and incomplete data types
An incomplete type in C is one that describes an identifier,
but lacks the information needed to determine the size of
the identifier.

Examples of incompletely defined types are:
1. An array type whose dimensions have not yet been specified
2. A structure type whose members have not yet been specified

Illustration: An array whose dimensions are
not specified

File1.c File2.c
int array[10]; extern int array;

Figure 5: Output of the sizeof_run.c

Figure 6: Assembly code generated by the compiler, for variable length array

70 | April 2015 | OpEN SOUrCE FOr YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OpEN SOUrCE FOr YOU | April 2015 | 71

Developers Insight

In the above example, for the code in file1.c, sizeof() can
be applied to find the size of the array, as it is completely
defined in file1.c. But, in file2.c, the sizeof() operator will
not work since the dimensions of the array are missing.
Without this information, the compiler has no knowledge of
how many elements are in the array and cannot calculate the
sizeof of the array.

How sizeof() is different from a function call
Let us consider the following code to understand how sizeof()
is different from a function call:

 1 #include <stdio.h>

 2 #include <stddef.h>

 3

 4 int main()

 5 {

 6 int x = 5;

 7

 8 printf(“%lu:%lu:%lu\n”, (long unsigned)sizeof(int),

 (long unsigned)sizeof x, (long unsigned)sizeof 5);

 9

 10 return 0;

 11 }

In the above example, sizeof() will work even if
the braces are not present across operands, whereas in
functions, braces are a must. So, here are three reasons
why sizeof is not a function:

1. It can be applied for any type of operand.
2. It can also be used, when type is an operand.
3. No brackets needed across operands
You can implement your own SIZEOF() macro, which

should work like a sizeof() operator.
According to the C99 standards, the sizeof() operator

yields the size (in integer bytes) of its operand, which may
be an expression or the parenthesised name of a type. If
the type of the operand is a variable length array type, the
operand is evaluated at runtime; otherwise, the operand is
not evaluated and the result is an integer constant, during
the compile time itself.

By: Satyanarayana Sampangi

The author is a member of the embedded software team at
Emertxe Information Technology (P) Ltd (http://www.emertxe.
com). His areas of interest are embedded C programming
combined with data structures and microcontrollers. He can be
reached at satya@emertxe.com

72 | April 2015 | OpEN SOUrCE FOr YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OpEN SOUrCE FOr YOU | April 2015 | PB

http://www.emertxe.com/
http://www.emertxe.com/

