
Team Emertxe

Linux Internals & Networking
System programming using Kernel interfaces

Contents

Linux Internals & Networking
Contents

●Introduction

●Transition to OS programmer

●System Calls

●Process

●IPC

●Signals

●Networking

●Threads

●Synchronization

●Process Management

●Memory Management

Process

Process

●Running instance of a program is called a PROCESS

●On a single-user system, a user may be able to run several programs at one

time:

–a word processor,

–a Web browser,

–gcc compiler etc...

●A process includes

–the stack

–a data section

–a heap

Process

●Running instance of a program is called a PROCESS

●If you have two terminal windows showing on your screen, then you are

probably running the same terminal program twice-you have two terminal

processes

●Each terminal window is probably running a shell; each running shell is another

process

●When you invoke a command from a shell, the corresponding program is

executed in a new process

●The shell process resumes when that process complete

Team Emertxe

Process
vs Program

●A program is a passive entity, such as file containing a list of instructions

stored on a disk

●Process is a active entity, with a program counter specifying the next

instruction to execute and a set of associated resources.

●A program becomes a process when an executable file is loaded into

main memory

●One program can be several processes

–Consider multiple users executing the same program

Factor Process Program

Storage Dynamic Memory Secondary Memory

State Active Passive

Process
vs Program

int global_1 = 0;
int global_2 = 0;

void do_somthing()
{

int local_2 = 5;
local_2 = local_2 + 1;

}

int main()
{

char *local_1 = malloc(100);

do_somthing();
…..

}

Program Task

local_1
local_2 5

global_1
global_2

.start main

.call do_somthing
…..

heap

data

code

stack

C
P

U
 R

e
g
is

te
rs

Team Emertxe

Process
State Transition Diagram

terminatedexit

waiting

I/O or event wait

running

scheduler dispatch

new admitted

ready

I/O or event completion

interrupted

Process
State Transition Diagram

waiting

I/O or event wait

running

scheduler dispatch

ready

I/O or event completion

interrupted

Priority
Round Robin

FCFS
Preemptive

I/O: Keyboard
Even: Signal

Process
States

●A process goes through multiple states ever since it is created by the OS

State Description

New The process is being created

Running Instructions are being executed

Waiting The process is waiting for some event to occur

Ready The process is waiting to be assigned to processor

Terminated The process has finished execution

Process
Descriptor

●To manage tasks:

– OS kernel must have a clear picture of what each task is doing.

– Task's priority

– Whether it is running on the CPU or blocked on some event

– What address space has been assigned to it

– Which files it is allowed to address, and so on.

●Usually the OS maintains a structure whose fields contain all the

information related to a single task

Process
Descriptor (PCB / TCB)

●Information associated with each process.

–Process state

●running, waiting, etc

–Program counter

●location of instruction to next execute

–CPU registers

●contents of all process centric registers

–CPU scheduling information

●priorities, scheduling queue pointers

–Memory-management information

●memory allocated to the process

–Accounting Information

●CPU used, clock time elapsed since start, time limits

–I/O Status Information

●I/O devices allocated to process, list of open files

Pointer Process State

Process ID

Program Counter

Registers

Memory Limits

List of Open Files

●

●

●

●

●

●

PCB: Process Control Block / TCB: Task Control Block

Process
Scheduling

●Maximize CPU use, quickly switch processes onto CPU for time sharing

●Process scheduler selects among available processes for next execution on CPU

●Maintains scheduling queues of processes
●Job queue – set of all processes in the system

●Ready queue – set of all processes residing in main memory, ready and waiting to execute

●Device queues – set of processes waiting for an I/O device

●Processes migrate among the various queues

Process
Ready & Various I/O Device Queues

Process
Scheduling – Queueing Diagram

Queueing diagram represents queues, resources, flows

Process
Descriptor – State Field

State Description

TASK_RUNNING Task running or runnable

TASK_INTERRUPTIBLE process can be interrupted while sleeping

TASK_UNINTERRUPTI

BLE

process can't be interrupted while sleeping

TASK_STOPPED process execution stopped

TASK_ZOMBIE parent is not issuing wait()

●State field of the process descriptor describes the state of process.

●The possible states are:

Process
Descriptor - ID

●Each process in a Linux system is identified by its unique process ID,

sometimes referred to as PID

●Process IDs are numbers that are assigned sequentially by Linux as

new processes are created

●Every process also has a parent process except the special init process

●Processes in a Linux system can be thought of as arranged in a tree,

with the init process at its root

●The parent process ID or PPID, is simply the process ID of the process’s

parent

Process
Schedule

P1

Stack

Heap

Data

Code

P2

Stack

Heap

Data

Code

P3

Stack

Heap

Data

Code

P4

Stack

Heap

Data

Code

Addr PS

PID

PC

REG

Memory

Files

Addr PS

PID

PC

REG

Memory

Files

Addr PS

PID

PC

REG

Memory

Files

Addr PS

PID

PC

REG

Memory

Files

Process
Active Processes

●The ps command displays the processes that are running on your

system

●By default, invoking ps displays the processes controlled by the terminal

or terminal window in which ps is invoked

●For example (Executed as “ps –aef”):

user@user:~] ps -aef
UID PID PPID C STIME TTY TIME CMD
root 1 0 0 12:17 ? 00:00:01 /sbin/init
root 2 0 0 12:17 ? 00:00:00 [kthreadd]
root 3 2 0 12:17 ? 00:00:02 [ksoftirqd/0]
root 4 2 0 12:17 ? 00:00:00 [kworker/0:0]
root 5 2 0 12:17 ? 00:00:00 [kworker/0:0H]
root 7 2 0 12:17 ? 00:00:00 [rcu_sched]

Parent
Process

ID

Process
ID

Process
Context Switching

●Switching the CPU to another task requires saving the state of the old

task and loading the saved state for the new task

●The time wasted to switch from one task to another without any

disturbance is called context switch or scheduling jitter

●After scheduling the new process gets hold of the processor for its

execution

Context Switching

operating system

Interrupt or system call

save state into PCB0

reload state from PCB1

save state into PCB1

reload state from PCB0

executing

executing

executingInterrupt or system callidle

idle

idle

process P1process P0

Process
Creation

●Two common methods are used for creating new process

–Using system():

●Relatively simple but should be used sparingly because it is inefficient and has

considerably security risks

–Using fork() and exec():

●More complex but provides greater flexibility, speed, and security

Process
Creation - system()

●It creates a sub-process running the standard shell

●Hands the command to that shell for execution

●Because the system function uses a shell to invoke your command, it's

subject to the features and limitations of the system shell

●The system function in the standard C library is used to execute a

command from within a program

●Much as if the command has been typed into a shell

Process
Creation - fork()

●fork makes a child process that is an exact copy of its parent process

●When a program calls fork, a duplicate process, called the child process,

is created

●The parent process continues executing the program from the point that

fork was called

●The child process, too, executes the same program from the same place

●All the statements after the call to fork will be executed twice, once, by

the parent process and once by the child process.

●The child obtains copies of the parent’s stack, data, heap, and text

segments.

Process
Creation - fork()

●The execution context for the child process is a copy of parent's context

at the time of the call

int child_pid;

int child_status;

int main()

{

int ret;

ret = fork();

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child process>

exit(0);

default:

<code for parent process>

wait(&child_status);

}

}

Stack

Heap

Data

Code

Stack

Heap

Data

Code

ret = 0

ret = xx

Process
fork() - The Flow

Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Process
fork() - The Flow

ret = fork();

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Process
fork() - The Flow

ret = fork();

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Process
fork() - The Flow

ret = fork(); ret = 26

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Text
Data

Stack

Process Status

PID = 26

Process
fork() - The Flow

ret = fork(); ret = 26

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Text
Data

Stack

Process Status

PID = 26

ret = fork();

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}

Process
fork() - The Flow

ret = fork(); ret = 26

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Text
Data

Stack

Process Status

PID = 26

ret = fork(); ret = 0

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}

Process
fork() - The Flow

ret = fork(); ret = 26

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Text
Data

Stack

Process Status

PID = 26

ret = fork(); ret = 0

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}

Process
fork() - The Flow

ret = fork(); ret = 26

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Text
Data

Stack

Process Status

PID = 26

ret = fork(); ret = 0

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}

Process
fork() - The Flow

ret = fork(); ret = 26

switch (ret)

{

case -1:

perror(“fork”);

exit(1);

case 0:

<code for child>

exit(0);

default:

<code for parent>

wait(&child_status);

}
Linux
Kernel

Text
Data

Stack

Process Status

PID = 25

Process
fork() - How to Distinguish?

●First, the child process is a new process and therefore has a new

process ID, distinct from its parent’s process ID

●One way for a program to distinguish whether it’s in the parent process

or the child process is to call getpid

●The fork function provides different return values to the parent and child

processes

●One process “goes in” to the fork call, and two processes “come out,”

with different return values

●The return value in the parent process is the process ID of the child

●The return value in the child process is zero

Process
fork() - Example

int main()

{

fork();

fork();

fork();

printf(“Hello World\n”);

return 0;

}

●What would be output of the following program?

Process
fork() - Example

P

int main()

{

fork();

fork();

fork();

printf(“Hello World\n”);

return 0;

}

Process
fork() - Example

P

int main()

{

fork();

fork();

fork();

printf(“Hello World\n”);

return 0;

}

C1

Team Emertxe

Team Emertxe

Process
Zombie

●Zombie process is a process that has terminated but has not been

cleaned up yet

●It is the responsibility of the parent process to clean up its zombie

children

●If the parent does not clean up its children, they stay around in the

system, as zombie

●When a program exits, its children are inherited by a special process,

the init program, which always runs with process ID of 1 (it’s the first

process started when Linux boots)

●The init process automatically cleans up any zombie child processes

that it inherits.

Process
Orphan

●An orphan process is a computer process whose parent process has

finished or terminated, though it remains running itself.

●Orphaned children are immediately "adopted" by init .

● An orphan is just a process. It will use whatever resources it uses. It is

reasonable to say that it is not an "orphan" at all since it has a parent but

"adopted".

●Init automatically reaps its children (adopted or otherwise).

●So if you exit without cleaning up your children, then they will not

become zombies.

Process
Overlay - exec()

●The exec functions replace the program running in a process with

another program

●When a program calls an exec function, that process immediately

ceases executing and begins executing a new program from the

beginning

●Because exec replaces the calling program with another one, it never

returns unless an error occurs

●This new process has the same PID as the original process, not only the

PID but also the parent process ID, current directory, and file descriptor

tables (if any are open) also remain the same

●Unlike fork, exec results in still having a single process

Process
Overlay - exec()

●Let us consider an example of execlp (variant of exec() function)

shown below

/* Program: my_ls.c */

int main()

{

print(“Executing my ls :)\n”);

execlp(“/bin/ls”, “ls”, NULL);

}

Program
Counter

Code

Data

Stack

Heap

PID

Registers

Process
Overlay - exec()

●After executing the exec function, you will note the following

changes

/* Program: my_ls.c */

int main()

{

print(“Executing my ls :)\n”);

execlp(“/bin/ls”, “ls”, NULL);

}

Program
Counter

Code

Data

Stack

Heap

PID

Registers

Preserved

Reset

Overwritten by New Code

Overwritten by New Code

Overwritten by New Code

Overwritten with New Code

Process
exec() - Variants

●The exec has a family of system calls with variations among them

●They are differentiated by small changes in their names

●The exec family looks as follows:

System call Meaning

execl(const char *path, const char *arg, ...); Full path of executable, variable number of

arguments

execlp(const char *file, const char *arg, ...); Relative path of executable, variable number

of arguments

execv(const char *path, char *const argv[]); Full path of executable, arguments as pointer

of strings

execvp(const char *file, char *const argv[]); Relative path of executable, arguments as

pointer of strings

Process
Blending fork() and exec()

●Practically calling program never returns after exec()

●If we want a calling program to continue execution after exec, then we

should first fork() a program and then exec the subprogram in the child

process

●This allows the calling program to continue execution as a parent, while

child program uses exec() and proceeds to completion

●This way both fork() and exec() can be used together

Process
COW – Copy on Write

●Copy-on-write (called COW) is an optimization strategy

●When multiple separate process use same copy of the same information

it is not necessary to re-create it

●Instead they can all be given pointers to the same resource, thereby

effectively using the resources

●However, when a local copy has been modified (i.e. write) , the COW

has to replicate the copy, has no other option

●For example if exec() is called immediately after fork() they never need

to be copied the parent memory can be shared with the child, only when

a write is performed it can be re-created

Process
Termination

●When a parent forks a child, the two process can take any turn to finish

themselves and in some cases the parent may die before the child

●In some situations, though, it is desirable for the parent process to wait

until one or more child processes have completed

●This can be done with the wait() family of system calls.

●These functions allow you to wait for a process to finish executing,

enable parent process to retrieve information about its child’s termination

Process
Termination

●Process can be terminated in any one of the following ways,

–Normal program termination, i.e end of the main function.

–By an explicit return statement in the main function.

–By the exit function or _exit system call anywhere in the program.

–On receipt of a signal which may terminate the process.

Process
Child’s exit status

●What does the parent do when the child is executing?

–Wait to gather the child’s exit status

●Example:

–Normal shell behavior when any command is run in the command prompt.

–Continue execution without waiting for the child and pick up the exit status of

the child later.

●Example:

–Shell exhibiting non-waiting, when any command is run in the background.

Synchronous & Asynchronous

●Wait for child to finish

Synchronous Asynchronous

Polling Interrupts

sleep wait

Process
Wait

●fork() in combination with wait() can be used for child monitoring

●Appropriate clean-up (if any) can be done by the parent for ensuring better

resource utilization

●Otherwise it will result in a ZOMBIE process

●There are four different system calls in the wait family

System call Meaning

wait(int *status) Blocks & waits the calling process until

one of its child processes exits. Return

status via simple integer argument

waitpid (pid_t pid, int* status, int options) Similar to wait, but only blocks on a child

with specific PID

wait3(int *status, int options, struct rusage

*rusage)

Returns resource usage information

about the exiting child process.

wait4 (pid_t pid, int *status, int options, struct

rusage *rusage)

Similar to wait3, but on a specific child

Process
Resource Structure

struct rusage {

struct timeval ru_utime;

/* user CPU time used */

struct timeval ru_stime; /* system CPU time

used */

long ru_maxrss; /* maximum resident set size

*/

long ru_ixrss; /* integral shared memory

size */

long ru_idrss; /* integral unshared data size

*/

long ru_isrss; /* integral unshared stack

size */

Team Emertxe

Thank You

