
R-Pi

Team Emertxe

IoT Protocols
HTTP

HTTP
The Web

● Internet(or The Web) is a massive distributed client/server information system.

HTTP
The Web

● Many applications are running concurrently over the Web, such as web browsing/surfing,

e-mail, file transfer, audio & video streaming, and so on.

● In order for proper communication, the applications must agree on a specific

application-level protocol such as HTTP, FTP, SMTP, POP, and etc.

HTTP
Introduction

● The most popular application protocol used in the Internet (or The WEB).

● Asymmetric request-response client-server protocol.

● An HTTP client sends a request message to an HTTP server.

● The server, in turn, returns a response message.

HTTP
Introduction

● Stateless protocol

➢ The current request does not know what has been done in the previous requests.

● Permits negotiating of data type and representation, so as to allow systems to be built

independently of the data being transferred.

HTTP
Browser

● The browser turns the URL into a request message and sends it to the HTTP server.

● The HTTP server interprets the request message, and returns you an appropriate response

message, which is either the resource you requested or an error message.

HTTP
URL(Uniform Resource Locator)

● Used to uniquely identify a resource over the web.

Syntax: protocol://hostname:port/path-and-file-name

Protocol The application-level protocol used by the client and server, e.g., HTTP,
FTP, and telnet.

Hostname The DNS domain name (e.g., www.emertxe.com) or IP address (e.g.,
192.128.1.2) of the server.

Port
The TCP port number that the server is listening for incoming requests from
the clients.

Path-and-
file-name

The name and location of the requested resource, under the server document
base directory.

HTTP
URL(Uniform Resource Locator)

● Used to uniquely identify a resource over the web.

URL:

http://www.emertxe.com/docs/index.html

Protocol HTTP

Hostname www.emertxe.com

Port The port number was not specified in the URL, and takes on the default
number, which is TCP port 80 for HTTP.

Path-and-
file-name

 "/docs/index.html".

HTTP
URL(Uniform Resource Locator)

● More Examples

ftp://www.ftp.org/docs/test.txt

mailto:user@test101.com

news:soc.culture.Singapore

telnet://www.nowhere123.com/

HTTP
URL(Uniform Resource Locator)

● For example, the browser translated the URL http://www.emertxe.com/ into the following

request message:

HTTP
URL(Uniform Resource Locator)

● When this request message reaches the server, the server can take either one of these

actions:

➢ The server interprets the request received, maps the request into a file under the

server's document directory, and returns the file requested to the client.

➢ The server interprets the request received, maps the request into a program kept in

the server, executes the program, and returns the output of the program to the client.

➢ The request cannot be satisfied, the server returns an error message.

● The browser receives the response message, interprets the message and displays the

contents of the message on the browser's window according to the media type of the

response (as in the Content-Type response header).

● Common media type include "text/plain", "text/html", "image/gif", "image/jpeg",

"audio/mpeg", "video/mpeg", "application/msword", and "application/pdf".

HTTP
HTTP over TCP/IP

● HTTP is a client-server application-level protocol.

● It typically runs over a TCP/IP connection.

To communicate over TCP/IP, you need to know (a) IP address or hostname, (b) Port number.

HTTP
Request + Response Messages

● HTTP client and server communicate by sending text messages.

● The client sends a request message to the server. The server, in turn, returns a

response message.

● An HTTP message consists of a message header and an optional message body, separated by

a blank line, as illustrated below:

HTTP
Request Messages

● The format of an HTTP request message is as follow:

HTTP: Request Messages
Request Line

Syntax request-method-name request-URI HTTP-version

request-method-name

● HTTP protocol defines a set of request methods, e.g., GET,
POST, HEAD, and OPTIONS.

● The client can use one of these methods to send a request to
the server.

request-URI specifies the resource requested.

HTTP-version Two versions are currently in use: HTTP/1.0 and HTTP/1.1.

Examples

GET /test.html HTTP/1.1

HEAD /query.html HTTP/1.0

POST /index.html HTTP/1.1

HTTP: Request Messages
Request Headers

Syntax request-header-name: request-header-value1, request-header-
value2, ...

Examples

Host: www.xyz.com

Connection: Keep-Alive

Accept: image/gif, image/jpeg, */*

Accept-Language: us-en, fr, cn

HTTP: Response Messages
Format

HTTP: Response Messages
Status Line

Syntax HTTP-version status-code reason-phrase

HTTP-version
● The HTTP version used in this session. Either HTTP/1.0 and

HTTP/1.1.

status-code a 3-digit number generated by the server to reflect the outcome
of the request.

Examples

HTTP/1.1 200 OK

HTTP/1.0 404 Not Found

HTTP/1.1 403 Forbidden

Common status code and reason phrase are "200 OK",
"404 Not Found", "403 Forbidden", "500 Internal Server Error".

HTTP: Response Messages
Response Headers

Syntax response-header-name: response-header-value1, response-header-value2, ...

Examples

Content-Type: text/html

Content-Length: 35

Connection: Keep-Alive

Keep-Alive: timeout=15, max=100

HTTP: Response Messages
Response Body

● The response message body contains the resource data requested.

HTTP
Request Methods

● HTTP protocol defines a set of request methods.

● A client can use one of these request methods to send a request message to an HTTP

server.

HTTP:
Request Methods

GET A client can use the GET request to get a web resource from the server.

HEAD

● A client can use the HEAD request to get the header that a GET request
would have obtained.

● Since the header contains the last-modified date of the data, this can be
used to check against the local cache copy.

POST Used to post data up to the web server.

PUT Ask the server to store the data.

DELETE Ask the server to delete the data.

TRACE Ask the server to return a diagnostic trace of the actions it takes.

OPTIONS Ask the server to return the list of request methods it supports.

CONNECT

Used to tell a proxy to make a connection to another host and simply reply
the content, without attempting to parse or cache it.

This is often used to make SSL connection through the proxy.

HTTP
Request Methods: GET

GET

● GET is the most common HTTP request method.

● A client can use the GET request method to request (or "get") for a
piece of resource from an HTTP server.

SYNTAX

GET request-URI HTTP-version
(optional request headers)
(blank line)
(optional request body)

request-URI specifies the path of resource requested, which must begin from the
root "/" of the document base directory.

HTTP-version: Version of the protocol

(optional
request headers)

The client uses the optional request headers (such as Accept, Accept-
Language, and etc) to negotiate with the server and ask the server to
deliver the preferred contents (e.g., in the language that the client
preferred).

HTTP
Request Methods: GET- Testing

● There are many way to test out the HTTP requests.

● "telnet" can be used to test the GET or write you own network program to send raw

request message to an HTTP server to test out the various HTTP requests.

● TELNET

➢ "Telnet" is a very useful networking utility.

➢ use telnet to establish a TCP connection with a server; and issue raw HTTP

requests.

➢ Example: suppose that you have started your HTTP server in the localhost (IP

address 127.0.0.1) at port 8000:

HTTP: Request Methods
HTTP/1.0 GET Request

● GET /index.html HTTP/1.0

➢ (enter twice to create a blank line)

HTTP/1.1 200 OK

Date: Sun, 18 Oct 2009 08:56:53 GMT

Server: Apache/2.2.14 (Win32)

Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT

ETag: "10000000565a5-2c-3e94b66c2e680"

Accept-Ranges: bytes

Content-Length: 44

Connection: close

Content-Type: text/html

X-Pad: avoid browser bug

<html><body><h1>It works!</h1></body></html>

Connection to host lost.

HTTP:
Response status code

● The first line of the response message (i.e., the status line) contains the response

status code, which is generated by the server to indicate the outcome of the request.

● The status code is a 3-digit number:

➢ 1xx (Informational): Request received, server is continuing the process.

➢ 2xx (Success): The request was successfully received, understood, accepted and

serviced.

➢ 3xx (Redirection): Further action must be taken in order to complete the request.

➢ 4xx (Client Error): The request contains bad syntax or cannot be understood.

➢ 5xx (Server Error): The server failed to fulfill an apparently valid request.

● Example:

➢ 200 OK: The request is fulfilled.

➢ 404 Not Found: The requested resource cannot be found in the server.

HTTP
Request Methods: HEAD

HEAD

● HEAD request is similar to GET request.

● However, the server returns only the response header without the
response body, which contains the actual document.

● HEAD request is useful for checking the headers, such as Last-
Modified, Content-Type, Content-Length, before sending a proper GET
request to retrieve the document.

SYNTAX

HEAD request-URI HTTP-version

(other optional request headers)

(blank line)

(optional request body)

Example

HEAD /index.html HTTP/1.0
(blank line)

HTTP/1.1 200 OK
Date: Sun, 18 Oct 2009 14:09:16 GMT
Server: Apache/2.2.14 (Win32)
Last-Modified: Sat, 20 Nov 2004 07:16:26 GMT
ETag: "10000000565a5-2c-3e94b66c2e680"
Accept-Ranges: bytes
Content-Length: 44
Connection: close
Content-Type: text/html
X-Pad: avoid browser bug

HTTP
Request Methods: OPTIONS

HEAD
● A client can use an OPTIONS request method to query the server which

request methods are supported.

SYNTAX

OPTIONS request-URI|* HTTP-version

(other optional headers)

(blank line)

Example

OPTIONS http://www.amazon.com/ HTTP/1.1
Host: www.amazon.com
Connection: Close
(blank line)

HTTP/1.1 200 OK
Date: Fri, 27 Feb 2004 09:42:46 GMT
Content-Length: 0
Connection: close
Server: Stronghold/2.4.2 Apache/1.3.6 C2NetEU/2412 (Unix)
Allow: GET, HEAD, POST, OPTIONS, TRACE
Connection: close
Via: 1.1 xproxy (NetCache NetApp/5.3.1R4D5)
(blank line)

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

