
Team Emertxe

Linux Internals & Networking
System programming using Kernel interfaces

Contents

Linux Internals & Networking
Contents

●Introduction

●Transition to OS programmer

●System Calls

●Process

●IPC

●Signals

●Networking

●Threads

●Synchronization

●Process Management

●Memory Management

Threads

Threads
Introduction to Threads

●Threads, like processes, threads are a mechanism that permits an application to perform

multiple tasks concurrently.

●A single process can contain multiple threads.

●Threads independently executes the same program, and they all share the same global

memory, including the initialized data, uninitialized data, and heap segments.

●The threads in a process can execute concurrently.

●On a multiprocessor system, multiple threads can execute parallel.

●If one thread is blocked on I/O, other threads are still eligible to execute.

●The Linux kernel schedules them asynchronously, interrupting each thread from time to

time to give others a chance to execute

●Threads are a finer-grained unit of execution than processes

●One thread can create additional threads; all these threads run the same program in the

same process

●But each thread may be executing a different part of the program at any given time

Team Emertxe

Process
Dis-advantages

●It is difficult to share information between processes.

– Since the parent and child don’t share memory, some form of inter process

communication is needed in order to exchange information between processes.

●Process creation with fork() is relatively expensive.

– Even with the copy-on-write technique, the need to duplicate various process

attributes such as page tables and file descriptor tables means that a fork() call is

still time-consuming.

Threads
Advantages

●Sharing information between threads is easy and fast.

–It is just a matter of copying data into shared (global or heap) variables.

–In order to avoid the problems that can occur when multiple threads try to update the

same information, the synchronization techniques are employed.

●Takes less time to create a new thread in an existing process than to create a

brand new process

–Thread creation is faster because many of the attributes that must be duplicated in a

child created by fork() are instead shared between threads.

–In particular, copy-on-write duplication of pages of memory is not required, nor is

duplication of page tables.

●Switching between threads is faster than a normal context switch

Threads enhance efficiency in communication between different executing

Team Emertxe

Threads
Compilation

●Use the following command to compile the programs using thread libraries

●$ gcc -o <output_file> <input_file.c> -lpthread

Threads
Creation

●The pthread_create function creates a new thread

Function Meaning

int pthread_create(

pthread_t *thread,

const pthread_attr_t *attr,

void *(*start_routine) (void *),

void *arg)

A pointer to a pthread_t variable, in which the

thread ID of the new thread is stored

A pointer to a thread attribute object. If you pass

NULL as the thread attribute, a thread will be

created with the default thread attributes

A pointer to the thread function. This is an

ordinary function pointer, of this type: void* (*)

(void*)

A thread argument value of type void *. Whatever

you pass is simply passed as the argument to the

thread function when thread begins executing

Threads
Creation

●A call to pthread_create returns immediately, and the original thread continues
executing the instructions following the call

●Meanwhile, the new thread begins executing the thread function

●Linux schedules both threads asynchronously

●Programs must not rely on the relative order in which instructions are executed
in the two threads

Threads
Termination

●The execution of a thread terminates in one of the following ways:

–The thread’s start function performs a return specifying a return value for the thread.

–The thread calls pthread_exit()

–The thread is canceled using pthread_cancel()

–Any of the threads calls exit(), or the main thread performs a return (in the main()

function), which causes all threads in the process to terminate immediately.

●Calling pthread_exit() is equivalent to performing a return in the thread’s start function,

with the difference that pthread_exit() can be called from any function that has been

called by the thread’s start function.

●If the main thread calls pthread_exit() instead of calling exit() or performing a return, then

the other threads continue to execute.

Threads
IDs

●Each thread within a process is uniquely identified by a thread ID.

●This ID is returned to the caller of pthread_create(), and a thread can obtain its

own ID using pthread_self().

●Thread IDs are useful within applications for the following reasons:

–Various Pthreads functions use thread IDs to identify the thread on which they are to act.

●Examples of such functions include pthread_join(), pthread_detach(), pthread_cancel(),

and pthread_kill().

–In some applications, it can be useful to tag dynamic data structures with the ID of a

particular thread.

Threads
IDs

●Occasionally, it is useful for a sequence of code to determine which thread is

executing it.

● Also sometimes we may need to compare one thread with another thread using

their IDs

● Some of the utility functions help us to do that

Function Meaning

pthread_t pthread_self() Get self ID

int pthread_equal(

pthread_t threadID1,

pthread_t threadID2);

Compare threadID1 with threadID2

If equal return non-zero value, otherwise return

zero

Threads
Joining

●It is quite possible that output created by a thread needs to be integrated for
creating final result

●So the main program may need to wait for threads to complete actions

●The pthread_join() function helps to achieve this purpose

Function Meaning

int pthread_join(

pthread_t thread,

void **value_ptr)

Thread ID of the thread to wait

Pointer to a void* variable that will receive

thread finished value

If you don’t care about the thread return

value, pass NULL as the second argument.

Threads
Joining

●The pthread_join() function waits for the thread identified by thread to terminate.

–If that thread has already terminated, pthread_join() returns immediately.

●If retval is a non- NULL pointer, then it receives a copy of the terminated

thread’s return value—that is, the value that was specified when the thread

performed a return or called pthread_exit().

●Calling pthread_join() for a thread ID that has been previously joined can lead to

unpredictable behavior.

●If a thread is not detached, then we must join with it using pthread_join().

–If we fail to do this, then, when the thread terminates, it produces the thread

equivalent of a zombie process.

–Aside from wasting system resources, if enough thread zombies accumulate,

we won’t be able to create additional threads.

Threads
Joining

●The task that pthread_join() performs for threads is similar to that performed by

waitpid() for processes.

–Threads are peers. Any thread in a process can use pthread_join() to join with any other

thread in the process.

●This differs from the hierarchical relationship between processes.

–When a parent process creates a child using fork(), it is the only process that

can wait() on that child.

Threads
Detaching a Thread

●By default, a thread is joinable, meaning that when it terminates, another thread

can obtain its return status using pthread_join().

●Sometimes, thread’s return status is not needed; we want the system to

automatically clean up and remove the thread when it terminates.

●In this case, we can mark the thread as detached, by making a call to

pthread_detach() specifying the thread’s identifier in thread.

●Once a thread has been detached, it is no longer possible to use pthread_join()

to obtain its return status, and the thread can’t be made joinable again.

Threads
Passing Data

●The thread argument provides a convenient method of passing data to threads

●Because the type of the argument is void*, though, you can’t pass a lot of data
directly via the argument

●Instead, use the thread argument to pass a pointer to some structure or array of
data

●Define a structure for each thread function, which contains the “parameters” that
the thread function expects

●Using the thread argument, it’s easy to reuse the same thread function for many
threads. All these threads execute the same code, but on different data

Threads
Return Values

●If the second argument you pass to pthread_join is non-null, the thread’s return
value will be placed in the location pointed to by that argument

●The thread return value, like the thread argument, is of type void*

●If you want to pass back a single int or other small number, you can do this
easily by casting the value to void* and then casting back to the appropriate
type after calling pthread_join

Threads
Attributes

●Thread attributes provide a mechanism for fine-tuning the behaviour of
individual threads

●Recall that pthread_create accepts an argument that is a pointer to a thread
attribute object

●If you pass a null pointer, the default thread attributes are used to configure the
new thread

●However, you may create and customize a thread attribute object to specify
other values for the attributes

Threads
Attributes

●There are multiple attributes related to a

●particular thread, that can be set during creation

●Some of the attributes are mentioned as follows:

–Detach state

–Priority

–Stack size

–Name

–Thread group

–Scheduling policy

–Inherit scheduling

Threads
Joinable and Detached

●A thread may be created as a joinable thread (the default) or as a detached
thread

●A joinable thread, like a process, is not automatically cleaned up by GNU/Linux
when it terminates

●Thread’s exit state hangs around in the system (kind of like a zombie process)
until another thread calls pthread_join to obtain its return value. Only then are
its resources released

●A detached thread, in contrast, is cleaned up automatically when it terminates

●Because a detached thread is immediately cleaned up, another thread may not

synchronize on its completion by using pthread_join or obtain its return value

Threads
Creating a Detached Thread

●In order to create a detached thread, the thread attribute needs to be set during

creation

●Two functions help to achieve this

Function Meaning

int pthread_attr_init(

pthread_attr_t *attr)

Initializing thread attribute

Pass pointer to pthread_attr_t type

Reurns integer as pass or fail

int pthread_attr_setdetachstate

(pthread_attr_t *attr,

int detachstate);

Pass the attribute variable

Pass detach state, which can take

●PTHREAD_CREATE_JOINABLE

●PTHREAD_CREATE_DETACHED

Threads
Threads Vs Process

●Advantages of Multi threaded approach

– Sharing data between threads is easy. By contrast, sharing data between
processes requires more work

– Thread creation is faster than process creation; context-switch time may be lower
for threads than for processes.

●Disadvantages of Multi threaded approach

– When programming with threads, we need to ensure that the functions we call are
thread-safe or are called in a thread-safe manner.

– A bug in one thread (e.g., modifying memory via an incorrect pointer) can damage
all of the threads in the process, since they share the same address space and
other attributes.

– Each thread is competing for use of the finite virtual address space of the host
process.

– In particular, each thread’s stack and thread-specific data consumes a part of the
process virtual address space, which is consequently unavailable for other
threads.

Team Emertxe

Threads
Canceling the Thread

●The pthread_cancel() function sends a cancellation request to the specified

thread.

●pthread_cancel() returns immediately; that is, it doesn’t wait for the target thread

to terminate.

Header <pthread.h>

Prototype int pthread_cancel(pthread_t thread);

Return Value Returns 0 on success, or a positive error number on error

Threads
Cancellation State & Type

●The pthread_setcancelstate() and pthread_setcanceltype() functions set flags

that allow a thread to control how it responds to a cancellation request.

●The pthread_setcancelstate() function sets the calling thread’s cancelability

state to the value given in state.

Header <pthread.h>

Prototype int pthread_setcancelstate(int state , int * oldstate);

int pthread_setcanceltype(int type , int * oldtype);

Return Value Returns 0 on success, or a positive error number on error

PTHREAD_CANCEL_DISABLE ●The thread is not cancelable.

●If a cancellation request is received, it remains pending

until cancelability is enabled.

PTHREAD_CANCEL_ENABLE ●The thread is cancelable.

●This is the default cancelability state in newly created

threads.

Threads
Cancellation State & Type

●If a thread is cancelable (PTHREAD_CANCEL_ENABLE), then a cancellation request

is determined by the thread’s cancelability type, which is specified by the type argument

in a call to pthread_setcanceltype().

●When a thread calls fork(), the child inherits the calling thread’s cancelability type and

state.

●When a thread calls exec(), the cancelability type and state of the main thread of the new

program are reset to PTHREAD_CANCEL_ENABLE and

THREAD_CANCEL_DEFERRED, respectively.

PTHREAD_CANCEL_ASYNCHRONOU

S
●The thread may be canceled at any time

PTHREAD_CANCEL_DEFERRED
●The cancellation remains pending until a

cancellation point is reached.

oldtype can be specified as NULL, if previous cancelability type is not needed.

Threads
Cancellation Points

●When cancelability is enabled and deferred, a cancellation request is acted upon only

when a thread next reaches a cancellation point.

●A cancellation point is a call to one of a set of functions defined by the implementation.

– Example: open(), read(), write(), close()

●If the thread was not detached, then some other thread in the process must join with it, in

order to prevent it from becoming a zombie thread.

●When a canceled thread is joined, the value returned in the second argument to

pthread_join() is a special thread return value: PTHREAD_CANCELED .

Threads
Cleanup Handlers

●Situation: A thread with a pending cancellation were simply terminated when it reached a

cancellation point

– shared variables and Pthreads objects (e.g., mutexes) might be left in an

inconsistent state, perhaps causing the remaining threads in the process to

produce incorrect results, deadlock, or crash.

●To get around this problem,

– Thread can establish one or more cleanup handlers

● A cleanup handler can perform tasks such as modifying the values of global

variables and unlocking mutexes before the thread is terminated.

Cleanup Handlers: functions that are automatically executed if the thread is canceled.

Threads
Cleanup Handlers

●Each thread can have a stack of cleanup handlers.

●When a thread is canceled, the cleanup handlers are executed working down from the

top of the stack.

●When all of the cleanup handlers have been executed, the thread terminates.

Cleanup Handlers: functions that are automatically executed if the thread is canceled.

Threads
Cleanup Handlers

●The pthread_cleanup_push() and pthread_cleanup_pop() functions respectively add and

remove handlers on the calling thread’s stack of cleanup handlers.

#include <pthread.h>

void pthread_cleanup_push(void (* routine)(void*), void * arg);

void pthread_cleanup_pop(int execute);

Team Emertxe

Thank You

