Linux Internals & Networking

System programming using Kernel interfaces

Team Emertxe

Contents

Linux Internals & Networking
Contents

Wy

.Introduction

.Transition to OS programmer
System Calls

.Process

APC

Signals

.Networking

.Threads

.Synchronization

.Process Management)
.@mory Management 2MERTXE

Sighals

Signals

Introduction

.Signals are software interrupts that provide a mechanism for handling

asynchronous events.

.Events can originate from

—outside the system

.such as when the user generates the interrupt character (usually via Ctrl-C)
—from activities within the program or kernel

.such as when the process executes code that divides by zero

' IO, ZME%TXE

Signals
Life Cycle

.Signals are raised(sent / generated)
.The kernel then stores the signal until it is able to deliver it.
.once it is free to do so, the kernel handles the signal as appropriate.

.The kernel can perform one of three actions upon receiving the signal,

—Ignore the signal
—Catch and handle the signal

-Perform the default action

' IO, ZME%TXE

Signals

Signal Identifiers

.Every signal has a symbolic name that starts with the prefix SIG.

.For example,

~SIGINT - The signal sent when the user presses Ctrl-C

-SIGABRT - The signal sent when the process calls the abort() function
-SIGKILL - The signal sent when a process is forcefully terminated.

.Signals are all defined in a header file included from <signal.h>

Kill -1 : This command will list the signals

' IO, ZME%TXE

Get Basics Right

Function pointers

-What is function pointer?

.Datatype *ptr ; normal pointer

.Datatype (*ptr)(datatype,..); Function pointer

.How it differs from normal data pointer?

Function Pointer

Holds address of function

.Pointing to a address from code
segment.

Dereference to execute the function

. Pointer arithmetic not valid

.Holds address of an object

.Pointing to a address from
stack/heap/data

.Dereference to get value from address

Pointer arithmetic is valid

)

2MERTXE

Get Basics Right

Call back functions

August 19,2012 3] : <30 # @ August2012 [3]
Mom's Bd : - o -
l Mom's Bday Play Time at the Park o s |
: Tuesday, August 21, 4:005m = 6:00pm :

A\igust 20
B school volunteer ,. i Dok e Dodather s ‘ m it} Lau:ﬁ]

NS ML Up wiu the ade iy
a2 Y You bt 3 the collee 1Y bnng the donuts! :
% 5
Gym time ,
L 7‘-' 13 U :.!In
nes

Augusl 21 24 hours Emad

| A A s
. S;hool Volunteer 10 minutes Netificaton x
¢ AN Loy

" -t

Add reminder \
. Lunch out!

- P.deet'Ma‘tt
Registering an event for later use

)

2MERTXE

Get Basics Right

Call back functions

.In computer programming, a callback is a reference to executable code, or a

piece of executable code, that is passed as an argument to other code.

.This allows a lower-level software layer to call a subroutine (or function) defined

In a higher-level layer.

)

2MERTXE

Team Emertxe

Signals
Origins

Wy

A Process may also send a Signal to another Process

.The kernel

A Process may also send a Signal to itself
.User can generate signals from command prompt:

<Kill' command:

3 kill <signal_number> <target_pid>
$ Kkill =KILL 4481

.Sends kill signal to PID 4481

S kill -USR1 4481

.Sends user signal to PID 4481

' ®®© ZME%TXE

Signals
Handling

-When a process receives a signal, it processes by handling immediately.

.For all possible signals, the system defines a default disposition or action to
take when a signal occurs

.There are four possible default dispositions:

~EXxit: Forces process to exit

—Core: Forces process to exit and create a core file
-Stop: Stops the process

—Ignore: Ignores the signal

.Handling can be done, called ‘signal handling’

' ®®© ZME%TXE

Signals
Handling

.The signal() function can be called by the user for capturing signals and

handling them accordingly

First the program should register for interested signal(s)

.Upon catching signals corresponding handling can be done

Function

Meaning

signal (int signal_number, void *(fptr) (int))

signal_number : Interested signal

fptr: Function to call when signal handles

'@@@

)

2MERTXE

Signals

Handling
P1
] - Registering handler
lSJ;:(I:'e %K hindalr signal / sigaction
Kernel Signal handler
S xecuted
pace

'@@@

Signal generated

Pointer Process
State

Signals \

Memory Limits

)

2MERTXE

Signals
Handler

A signal handler should perform the minimum work necessary to respond to the
signal

.The control will return to the main program (or terminate the program)

.In most cases, this consists simply of recording the fact that a signal occurred or
some minimal handling

.The main program then checks periodically whether a signal has occurred and
reacts accordingly

Its called as asynchronous handling

' ®®© ZME%TXE

Team Emertxe

Signals
Advanced Handling

.The signal() function can be called by the user for capturing signals and
handling them accordingly

It mainly handles user generated signals (ex: SIGUSR1), will not alter default
behavior of other signals (ex: SIGINT)

.In order to alter/change actions, sigaction() function to be used

-Any signal except SIGKILL and SIGSTOP can be handled using this

Function Meaning

sigaction(signum : Signal number that needs to be handled
int signum,

const struct sigaction *act, act: Action on signal

struct sigaction *oldact)
oldact: Older action on signal

’ ®®© ZME%TXE

Team Emertxe

Signals

vs system calls

Sending Signal

P2 < P1
System call
User S/w interrupt from
Space U/S to K/S
Kernel S/w interrupsti%‘?:rls
S
pace K/S to U/S
Vv

' ®®© ZME%TXE

I Synchronous & Asynchronous

Wy

Synchronous Asynchronous

Wait for child to finish

Interrupts

wait

Pause

[y

),

2MERTXE

Signals
Self Signaling

A process can send or detect signals to itself
.This is another method of sending signals
.There are three functions available for this purpose

.This is another method, apart from ‘kill’

Function Meaning

raise (int sig) Raise a signal to currently executing process. Takes signal number
as input

alarm (int sec) Sends an alarm signal (SIGALRM) to currently executing process
after specified number of seconds

pause() Suspends the current process until expected signal is received. This
IS much better way to handle signals than sleep, which is a crude
approach

’ ® © ZME%TXE

Inter Process Communications
Summary

Wy

Data exchange Resource usage/access/control

We have covered

Communication Synchronization

Pipes

FIFO

.Shared memory
Signals

' OIOI ZME%TXE

Team Emertxe

Thank You

