
R-Pi

Team Emertxe



IoT Protocols
CoAP



CoAP
Introduction

 Is one of the latest application layer protocol developed by IETF for smart devices to 

connect to Internet

 Many devices exist as components in vehicles and buildings with constrained resources, 

it leads a lot of variation in power computing, communication bandwidth etc

 lightweight protocol CoAP is intended to be used and considered as a replacement of HTTP 

for being an IoT application layer protocol

IETF: Internet Engineering Task Force



CoAP
Features

 Constrained web protocol fulfilling M2M requirements

 Security binding to DTLS(Datagram Transport Layer Security)

 Asynchronous message exchanges

 Low header overhead and parsing complexity

 URI and content type support

 Simple proxy and caching capabilities

 UDP binding with optional reliability supporting unicast and multicast requests



CoAP
Structure Model

 CoAP interactive model is similar to HTTP's client/server model

 The bottom layer is Message layer that has been designed to deal with UDP and 

asynchronous switching

 The request/response layer concerns communication method and deal with request/response 

message



CoAP: Structure Model
Message Layer Model

 Message Layer supports 4 types of messages

 CON (confirmable)

 NON (non-confirmable)

 ACK (Acknowledgement)

 RST (Reset) 



CoAP: Structure Model
Message Layer Model

 Reliable message transport

 Keep retransmission until get ACK with the same message ID (like 0x8c56 in fig.)

 If recipient fail to process message, it responses by replacing ACK with RST. 

 Fig shows a reliable message transport



CoAP: Structure Model
Message Layer Model

 UnReliable message transport

● A message that does not require reliable transmission can be sent as a Non-

confirmable Message (NON).

 Transporting with NON type message.

 It doesn't need to be ACKed, but has to contain message ID for supervising in case 

of retransmission.

 Messages is not acknowledged, but has a message ID for duplicatedetection

 If recipient fail to process message, server replies RST.

 Fig shows a reliable message transport



CoAP: Structure Model
Message Layer Model

 UnReliable message transport

● Unlike HTTP, CoAP deals with these interchanges asynchronously over adatagram-

oriented transport, such as User Datagram Protocol (UDP), and thus, a NON might get 

lost without the client and the server noticing it.



CoAP: Structure Model
Request/Response Layer Model

 Piggy-backed

 Client sends request using CON type or NON type message and receives response ACK 

with confirmable message immediately

 fig. shows successful response, ACK contain response message (identify by using 

token), for failure response, ACK contain failure response code

The successful and failure response results of GET method



CoAP: Structure Model
Request/Response Layer Model

 Separate response

 If server receive a CON type message but not able to response this request 

immediately, it will send an empty ACK in case of client resend this message

 When server ready to response this request, it will send a new CON to client and 

client reply a confirmable message with acknowledgment

 ACK is just to confirm CON message, no matter CON message carry request or response



CoAP: Structure Model
Request/Response Layer Model

 Non confirmable request and response

 unlike Piggy-backed response carry confirmable message, in Non confirmable request 

client send NON type message indicate that Server don't need to confirm

 Server will resend a NON type message with response 



CoAP: Structure Model
Message Format

 CoAP is based on the exchange of compact messages that, by default, are transmitted over 

UDP (i.e. each CoAP message occupies the data section of one UDP datagram)

 Message of CoAP uses simple binary format

 Message= fixed-size 4-byte header plus a variable-length Token plus a sequence of CoAP 

options plus payload



CoAP: Structure Model
Message Format

Ver It is a 2 bit unsigned integer indicating the version

T 2 bit unsigned integer indicating the message type: 0 confirmable, 1 non-confirmable

OC / TKL Token Length is the token 4 bit length

Code It is the code response (8 bit length)

MessageID It is the message ID expressed with 16 bit



CoAP: Security + Application
Why use DTLS for CoAP Security

 CoAP is now becoming the standard protocol for IoT applications

 Security is important to protect the communication between devices

 A security protocol DTLS is introduced

 There are three main elements when considering security, namely integrity, 

authentication and confidentiality, DTLS can achieve all of them

 DTLS employ TCP, which is too complex

 DTLS solves two problems

 reordering and packet lost

 It adds three implements

 packet retransmission

 assigning sequence number within the handshake

 replay detection



CoAP: Security + Application
Why use DTLS for CoAP Security

 DTLS in application layer protect end-to-end communication

 No end-to-end communication protection will make it easy for attacker to access to all 

text data that passes through a compromised node

 DTLS also avoids cryptographic overhead problems that occur in lower layer security 

protocols



CoAP: Security + Application
Application for Smart Homes



THANK YOU


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

