
R-Pi

Team Emertxe

IoT: Protocols
AMQP

AMQP
Introduction

 It’s an open standard designed to allow development of applications which are tailored

to work as middleware in brokering of messages between different processes,

applications, or even unrelated systems that need to talk to each other and pass on

messages.

AMQP
What

 The Advanced Message Queuing Protocol (AMQP) creates interoperability between clients

and brokers (i.e. messaging middleware).

 Its goal of creation was to enable a wide range of different applications and systems to

be able to work together, regardless of their internal designs, standardizing enterprise

messaging on industrial scale.

 AMQP includes the definitions for both the way networking takes place and the way

message broker applications work. This means the specifications for:

 Operations of routing and storage of messages with the message brokers and set of

rules to define how components involved work

 And a wire protocol to implement how communications between the clients and the

brokers performing the above operations work

AMQP
Reasons: Creation and Use

 Before AMQP, there used to be different message brokering and transferring applications

created and set in use by different vendors.

 However, they had one big problem and it was their lack of interoperability.

 There was simply not a way for one to work with another.

 The only method that could be used to get different systems using different protocols to

work was by introducing an additional layer for converting messages called messaging

bridge.

 These systems, using individual adapters to be able to receive messages like regular

clients, would be used to connect multiple and different messaging systems (e.g.

WebSphere MQ and another).







AMQP
Reasons: Creation and Use

 AMQP, by offering the clearly defined rules and instructions as we explained above,

creates a common ground which can be used for all message queuing and brokering

applications to work and interoperate.

AMQP
In Brief

AMQP
In Brief

● The AMQP has the following view of the world: messages are published to exchanges, which

are often compared to post offices or mailboxes.

● Exchanges then distribute message copies to queues using rules called bindings.

● Then the broker either deliver messages to consumers subscribed to queues, or consumers

fetch/pull messages from queues on demand.

● When publishing a message, publishers may specify various message attributes (message

meta-data).

● Some of this meta-data may be used by the broker, however, the rest of it is completely

opaque to the broker and is only used by applications that receive the message.

AMQP
In Brief

● Networks are unreliable and applications may fail to process messages therefore the AMQP

model has a notion of message acknowledgements:

● when a message is delivered to a consumer the consumer notifies the broker, either

automatically or as soon as the application developer chooses to do so.

● When message acknowledgements are in use, a broker will only completely remove a message

from a queue when it receives a notification for that message (or group of messages).

● In certain situations, for example, when a message cannot be routed, messages may be

returned to publishers, dropped, or, if the broker implements an extension, placed into

a so-called "dead letter queue".

● Queues, exchanges and bindings are collectively referred to as AMQP entities.

AMQP
Use Cases

 Whenever there is a need for high-quality and safe delivery of messages between

applications and processes, AMQP implementing message brokering solutions can be

considered for use.

 AMQP ensures

 Reliability of message deliveries

 Rapid and ensured delivery of messages

 Message acknowledgements

AMQP
Use Cases

 capabilities make it ideal for

 Monitoring and globally sharing updates

 Connecting different systems to talks to each other

 Allowing servers to respond to immediate requests quickly and delegate time

consuming tasks for later processing

 Distributing a message to multiple recipients for consumption

 Enabling offline clients to fetch data at a later time

 Introducing fully asynchronous functionality for systems

 Increasing reliability

AMQP
Assembly and Terminology

 Understanding and working with AMQP involves being familiar with quite a few different

terms and terminology.

 In this section, we will go over these key parts:

 Broker (Server): An application - implementing the AMQP model - that accepts

connections from clients for message routing, queuing etc.

 Message: Content of data transferred / routed including information such as payload

and message attributes.

 Consumer: An application which receives message(s) - put by a producer - from

queues.

 Producer: An application which put messages to a queue via an exchange.

AMQP
Main Components

 The AMQP Model defining how messages are received, routed, stored, queued and how

application parts handling these tasks work rely on the clear set definitions of the

below components:

 Exchange: A part of the broker (i.e. server) which receives messages and routes

them to queues

 Queue (message queue): A named entity which messages are associated with and from

where consumers receive them

 Bindings: Rules for distributing messages from exchanges to queues

AMQP
How Do Message Brokers Work?

 "message brokers" translate to applications which receive the actual messages and route

(i.e. transfer) them to relevant parties.

 APPLICATION EXCHANGE TASK LIST WORKER

 [DATA] -------> [DATA] ---> [D]+[D][D][D] ---> [DATA]

 Publisher EXCHANGE Queue Consumer

AMQP
How does Exchanges Work?

 After receiving messages from publishers (i.e. clients), the exchanges process them and

route them to one or more queues.

 The type of routing performed depend on the type of the exchange and there are currently

four of them.

 Direct Exchange

 Fanout Exchange

 Topic Exchange

 Headers Exchange

AMQP
Direct Exchange

● Direct exchange type involves the delivery of messages to queues based on routing keys.

● Routing keys can be considered as additional data defined to set where a message will

go.

AMQP
Fanout Exchange

● Fanout exchange completely ignores the routing key and sends any message to all the

queues bound to it.

● Use cases for fanout exchanges usually involve distribution of a message to multiple

clients for purposes similar to notifications:

➔ Sharing of messages (e.g. chat servers) and updates (e.g. news)

➔ Application states (e.g. configurations)

AMQP
Topic Exchange

● Topic exchange is mainly used for pub/sub (publish-subscribe) patterns.

● Using this type of transferring, a routing key alongside binding of queues to exchanges

are used to match and send messages.

AMQP
Headers Exchange

● Headers exchange constitutes of using additional headers (i.e. message attributes)

coupled with messages instead of depending on routing keys for routing to queues.

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

