R-PI

Team Emertxe



loT API's

ReST




REST

Introduction

Acronynm: REpresentational State Transfer

¢ 777
> Resources/Nouns
? Actions
> Representation
> State

Server Database

?> Transfer

1. The client requests a representation of a
specific blog post

=22

2. The server requests the blog post from

the database.
=

3. The database returns the blog post.
-

4. Server creates a J50N representation of
» the blog post and sends it to the client.

2MERTXE



REST

Introduction

* Acronynm: REpresentational State Transfer

Request
Internet
Response

Web app Web

in Browser Server Database

2MERTXE




REST

Introduction

* Acronynm: REpresentational State Transfer

Client Application Sends
Request to REST API

Client
eb Application|

Client Application
Receives Response

API Request Triggers Actions on
Appropriate Tables in the Database

Database

Response is Compiled in Web Standard
Format (usually JSON or XML)

REST is not a standard or protocol, this is an approach to or

architectural style for writing API

2MERTXE



REST

Introduction

* Acronynm: REpresentational State Transfer

ACCOUNT
SERVICE

Q

SEARCH
SERVICE

DESKTOP

R
RESTAURANT
SERVICE

O

RESERVATION
SERVICE

API
GATEWAY

:I REST I

MOBILE

P4

MESSAGING
SERVICE

REST is not a standard or protocol, this is an approach to or

architectural style for writing API

2MERTXE



REST
Need

* Separate Client / Server

* Independent of platforms / languages

* Provides flexibility

* It is scalable

®* Not constraint to one format

* Built on top of HTTP, can take advantage of HTTP cache

* Easy to use

2MERTXE




REST

Understanding

* Is an architectural style

* Restful refers to web services that implement REST

* Simply a program that returns data from the database to the client in a format that

it requests

* Based on HTTP, retrieves data from standard HTTP methods,

¥ Get

> Put

> Post

> Delete

2MERTXE




REST

Constraints

®* Client - Server

®* Stateless

®* Cache

®* Uniform Interface

* Layered System

®* Code on Demand

2MERTXE




REST- Constraints
Client-Server

®* REST application should have Client - Server architecture

* Client & Server is decoupled

* Both can evolve independently

* Clients need not worry about the logic / data access layer

®* Servers need not know anything about the frontend UI

2MERTXE




REST- Constraints
Stateless

®* Stateless constraints states that the server does not store any session data
* All the information to understant the request is contained in the request itself

* Improves scalability

2MERTXE




REST- Constraints
Cache

* Responses should be cachable, if possible

* It requires that every response should include whether a response can be cachable or

not

* For subsequent requests, the client can retrieve from its cache, no need to send the

request to the server

* Reduces network latency

2MERTXE




REST- Constraints
Uniform Interface

* Key differentiator between REST and NON-REST API’s

* 4 elements of UI constraints

* Identification of Resources
> Manipulation of Resources through Representations
> Self-Descriptive Messages

* Hypermedia as the Engine of Application State

* Promotes generality as all components interacts in the

same way

2MERTXE



REST- Constraints

Uniform Interface: Identification of Resources

Identification of Resources

FEach distinct Web-based concept is known as a resource and may be addressed by

a unique identifier, such as a URI.

* For example, a particular home page URI, like http://www.emertxe.com, uniquely

identifies the concept of a specific website’s root resource.

2MERTXE




REST- Constraints

Uniform Interface: Manipulation

* Manipulation of Resources through Representations
Clients manipulate representations of resources.
The same exact resource can be represented to different clients in different ways.

> For example, a document might be represented as HTML to a web browser, and as JSON

to an automated program.

> The key idea here is that the representation is a way to interact with the resource

but it is not the resource itself.

> This conceptual distinction allows the resource to be represented in different ways

and formats without ever changing its identifier.

2MERTXE




REST- Constraints

Uniform Interface: Self-descriptive messages

* Self-descriptive messages
A resource'’s desired state can be represented within a client’s request message.

A resource’s current state may be represented within the response message that

comes back from a server.

> As an example, a wiki page editor client may use a request message to transfer a
representation that suggests a page update (new state) for a server-managed web

page (resource).

> The self-descriptive messages may include metadata to convey additional details
regarding the resource state, the representation format and size, and the message

itself.

An HTTP message provides headers to organize the wvarious types of metadata into

uniform fields.

2MERTXE




REST- Constraints

Uniform Interface: Hypermedia

Hypermedia as the engine of application state (HATEOAS)

>

A resource’s state representation includes links to related resources.

Links are the threads that weave the Web together by allowing users to traverse

information and applications in a meaningful and directed manner.

The presence, or absence, of a 1link on a page 1is an 1important part of the

resource’s current state.

2MERTXE



REST- Constraints(Optional)
Code On Demand

* In addition to the data, the servers can provide executable code to the client

* A constraint which enables web servers to temporarily transfer executable programs,

such as scripts or plug-ins, to clients.

* The client must be able to understand and execute the code that it downloads on-

demand from the server.

* For this reason, code-on-demand 1is the only constraint of the Web’s architectural

style that is considered optional.

* Web browserhosted technologies like Java applets, JavaScript, and Flash exemplify the

code—ondemand constraint.

2MERTXE




THANK YOU



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

