Linux Systems
Getting started with setting up an Embedded platform

Team Emertxe

Introduction

Introduction
Let us ponder ...

 What exactly is an Operating System (0OS)?
 Why do we need 0S?
 How would the OS would look like?

 Is it possible for a team of us (in the room) to create an
OS of our own?

* Is it necessary to have an OS running in a Embedded
System?

* Will the OS ever stop at all?

’ ® ZME%TXE

Introduction
Operating System

Humans ﬂ M

: |] Program

e Interface
< P
User
Programs o
| 0S
Interface
Operating
System
HW
- Interface/
Privileged
Instr
Hardware

’ ®®© ZME%TXE

Introduction
What is Linux?

* Linux is a free and open source operating system that is
causing a revolution in the computer world

» Originally created by Linus Torvalds with the assistance of
developers called community

 This operating system in only a few short years is
beginning to dominate markets worldwide

* Today right from hand-held devices (ex: Android)

to high end systems (ex: Stock exchange servers)

use Linux

’ ®®© ZME%TXE

Introduction
Why use Linux?

* Free & Open Source -GPL license, no cost
* Reliability -Build systems with 99.999% upstream

* Secure -Monolithic kernel offering high security

Scalability -From mobile phone to stock market servers

The word 'Free’ in Open Source should be interpreted as in
'Freedom’ not as 'Free Beer'. This also explains the spirit of
creating Open Source software.

’ ®®© ZME%TXE

Introduction
What is Open Source?
software

« > 4
Freedom of * Freedom of
use > < redistribute
« 4
»
NS v) I \

Freedom of Freedom of
modify copy

’ ®®© ZME%TXE

Introduction
Open Source - How it all started?

* With GNU (GNU is not UNIX)

* Richard Stallman made the initial announcement in 1983, Free
Software Foundation (FSF) got formed during 1984

* Volunteer driven GNU started developing multiple projects,
but making it as an operating system was always a challenge

* During 1991 a Finnish Engineer Linus Torvalds developed core
OS functionality, called it as “Linux Kernel”

* Linux Kernel got licensed under GPL, which laid strong
platform for the success of Open Source

* Rest is history! §

’ ®®© ZME%TXE

Introduction
Open Source - How it evolved?

* Multiple Linux distributions started emerging around the Kernel

 Some applications became platform independent
« Community driven software development started picking up

* [nitially seen as a “geek-phenomenon”, eventually turned out to be
an engineering marvel

e Centered around Internet
» Building a business around open source started becoming viable

 Redhat set the initial trend in the OS business

Kernel

Applications
Customization

’ ®®© * ZME%TXE

-

OS

CAN@NICAL

Q rednat

CNoX0ID

Novell

\-

~

4/

f Consumer

Apache -
OpenOffice

_

D LibreOffice’

~

Introduction
Open Source - Where it stands now?

(Databases R

Ml_.;SQmC

PO o\
Hortonworks

Volt

[Server/CIoud)
(v 21 INMS
n openstack

Fdowsstack
cC

OPSCODE

\-
4)

Education

T3 canvas

\-r

docebor

Thoodle

J

’@@@

- /

N\ J
C ams)
& Joomlal

AUTOMATTIC

MedlaW|k|

[

W SUGARCRM.

\ /

_

\

Enterprise

® Pgrzt; ab o

& Alfresco

KXWIKI

-

opencart

_

J
eCommerce \

ﬁ Magento

eCommernce FLaEion

<7 spree

/

2MERTXE

Introduction
Open Source vs Freeware

0SS Freeware
v" Users have the right to access & v Freeware is usually distributed in a
modify the source codes form of binary at ‘Free of Charge’,
v" In case original programmer but does not open source codes
disappeared, users & developer itself.
group of the S/W usually keep its v" Developer of freeware could
support to the S/W. abandon development at any time
v" 0SS usually has the strong users & and then final version will be the
developers group that manage and last version of the freeware. No
maintain the project enhancements will be made by
others.
v" Possibility of changing its licensing
policy

’ ®®© ZME%TXE

Introduction ->
GPL

e Basic rights under the GPL - access to source code, right
to make derivative works

» Reciprocity/Copy-left

 Purpose is to increase amount of publicly available
software and ensure compatibility

 Licensees have right to modify, use or distribute
software, and to access the source code

’ ®®© ZME%TXE

Introduction
GPL - Issues

* Linking to GPL programs

* No explicit patent grant

* Does no discuss trademark rights
* Does not discuss duration

« Silent on sub-licensing

* Relies exclusively on license law, not contract

’ ®®© ZME%TXE

Introduction
Linux Properties

What has made Linux so popular to scale from mobile devices to
powering 90% of world’s super computer? Here are the key
properties of Linux

* Multitasking

- Ability to handle multiple tasks across single / multiple processors
* Multi-user

- Have got users with different level of privileges for secured access
* Protected Memory

- Clear distinction called ‘user-space’ and ‘kernel’ space thereby having protected memory
access. This makes Linux Super secure comparing with other operating systems

* Hierarchical File System

- Well organized file system that handles various types of files. This also makes handling
various inputs very simple

’ ®®© ZME%TXE

Introduction
Linux Components

« Hardware Controllers: This subsystem is
comprised of all the possible physical
User devices in a Linux installation - CPU,

. . (5]
Application 5 memory hardware, hard disks
A A v
| ¢ + Linux Kernel: The kernel abstracts and
GNU > mediates access to the hardware
L s resources, including the CPU. A kernel is
ibrary .
x | the core of the operating system
£ ‘
= : : O/S Services: These are services that are
System Call Interface) . .
. typically considered part of the operating
Y 3 system (e.g. windowing system, command
n shell)
A &
Architectur:Dependent g pser Application;: The set of applications
Kernel Code in use on a particular Linux system (e.g.

Hardware Platform web browser)

’ ®®© ZME%TXE

Introduction

Linux Directory Structure

—
—
—
g /sbin
—
—
—

[—

’@@@

—
— R
—
—
—
—
—-

User home directories

Root user's home directory

Essential user command binaries

Essential super user command binaries
Essential shared libraries and kernel modules

Multi user utilities and application
Add-on application software packages

Host specific configuration
Device files
Mount point for removable media

Mount point for temporarily mounted file systems
Static boot-able images

Temporary files
Variable files (Logs)

Virtual FS documenting kernel and process status

2MERTXE

User Interfaces

User Interfaces
GUI

* |n graphical mode the user will be given a GUI using which he / she will be
able to use the system using mouse

« Similar to windows based system that exist in other operating systems like
MS Windows & Apple MAC OS

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Downloads Music Pictures Public

videos

s o) @ G . 032523PM
EIL) g@ Tuesday,June 23,2015

adil_sk— Dolphin

’ ®®© ZME%TXE

User Interfaces
CLI

* Textual mode used to execute requested commands

aE adil_sk: bash - Kensole > e X
File Edit Wiew Bookmarks Sekkings Help

user@user-dt:~] 1s

bin Desktop Documents Downloads Music Pictures Public Softwares SVN Videos
user@user-dt:~] 1s -1

total 36
drwx rwx r-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x
drwxr-xr-x

adil_sk adil_sk bin

adil sk adil_sk Desktop
adil sk adil_sk Documents
adil sk adil_sk Downloads
adil_sk adil_sk Music
adil_sk adil_sk Pictures
adil sk adil sk Public
adil sk adil sk Softwares
adil sk adil sk SVN -> /mnt/Datal/SVN/
adil sk adil sk Videos
user@user-dt:~]

OO UNONWONN

[= adil_sk : besh]

- !'*WE_EEj1— |8 adil_sk: bash - Konsole &) CLE_\: (o] 03:37:12 PM

Tuesday,June 23,2015

Our focus is to be in the CLI mode by executing various commands by invoking shells.

We will also create programs using this environment called ‘Shell scripts’

’ ®®© ZME%TXE

User Interfaces
The Shell - Introduction

* Shell is an application, works as a command interpreter

* Gets a command from user, gets it executed from OS

e Gives a programming environment to write scripts using
interpreted language

* |t has been inherited from UNIX operating system, which was
predecessor to Linux

’ ®®© ZME%TXE

User Interfaces
The Shel - Types

* Login
— Starts after a successful login

- It is executed under user ID during login process

— It picks up user specific configuration and loads them
 Non Login
- A Non login shell is started by a program without a login
- In this case, the program just passes the name of the shell executable

- For example, for a Bash shell it will be simply bash

- Following are examples of Non-login shells:
* sh
* bash
* ksh
* c¢sh

’ ®®© ZME%TXE

User Interfaces
The Shel - Types

* Try the following on your command prompt
S cat /etc/shells
S echo SO

’ ®®© ZME%TXE

User Interfaces
The Shell - Invocation

W

 The main task of a shell is providing a user environment

’@@@

Input
W
v
shell
,/ \‘
List all Error
the report
files P

2MERTXE

User Interfaces
The Shell - bash

* Bash - The command interpreter

.DAs
.DAs
.DAs

.DAs

’@@@

n_profile (Login Shell, During login)
nrc (Non Login Shell, New instance)

n_logout (Login Shell, Logout)

W

n_history (Non Login Shell, Command history)

Linux (Ubuntu)

Ubuntu Login Shell

(optional)

l .bash_profile]— — —-l _profile

Ubuntu Non-login Shell

general shell settings

2MERTXE

User Interfaces
The Shell - bash

« Hands on:

- Enter ls -a in your home directory
- Display contents of all files mentioned above

’ ®®© ZME%TXE

User Interfaces
The Shell - Environmental Variables

* Login-shell's responsibility is to set the non-login shell and
it will set the environment variables

 Environment variables are set for every shell and
generally at login time

* Environmental variables are set by the system.
* Environmental variables hold special values. For instance

S echo SSHELL

 Environmental variables are defined in /etc/profile,
/etc/profile.d/ and ~/.bash_profile.

 When a login shell exits, bash reads ~/.bash_logout

’ ®®© ZME%TXE

User Interfaces
The Shell - Environmental Variables

* env - lists shell environment variable/value pairs

Variable
SHELL

TERM

USER
PWD
OLDPWD

MAIL
PATH

HOME

HOSTNAME
PS1

’@@@

Description

Describes the shell that will be interpreting user commands

This specifies the type of terminal to emulate when running
the shell

The current logged in user
The current working directory
The previous working directory

The path to the current user's mailbox

A list of directories that the system will check when looking for
commands

The current user's home directory

The hostname of the computer
The primary command prompt definition

P 4
SMERTXE

Basic Shell Commands

Basic Shell Commands ->
Types

* An executable program like all those files can have in
/usr/bin.

 Acommand built into the shell itself. bash provides a
number of commands internally called shell built-ins The
cd command, for example, is a shell built-in

* Ashell function. These are miniature shell scripts
incorporated into the environment.

* An alias. Commands that you can define yourselves, built
from other commands.

* To know the type, try

S type <command>

’ ®®© ZME%TXE

I Basic Shell Commands
Command _Weaning

Is List's all the files

pwd Gives present working directory
cd Change directory

man Gives information about command
df Disk free

du Disk usage

which Shows full path of command

’ ®®© IME%TXE

e W

Path is the location where a particular file is located in the
directory (tree) structure

It starts with the root (‘/’) directory and goes into
appropriate directory

The path depends on the reference point from where you
take it up:

- Absolute Path : Specifies the location with reference from
root directory

- Relative Path : Specifies the location with reference to
present working directory (pwd)

As the name says relative path will vary depending on your
pwd

’ ®®© ZME%TXE

Visual Editor - vi

IVisual Editor - vi ->

* Screen-oriented text editor originally created for the
Unix operating system

 The name vi is derived from the shortest unambiguous
abbreviation for the ex command visual

* Improved version is called as vim
 Toopen a file

S vi <filename>

or

S vim <filename>

’ ®®© ZME%TXE

IVisual Editor - vi ->

 vi opens a file in command mode to start mode.

 The power of vi comes from its 3 modes

- Escape mode (Command mode)

* Search mode
* File mode
- Editing mode
 Insert mode
* Append mode
 Open mode
* Replace mode
- Visual mode

’ ®®© ZME%TXE

Visual Editor - vi ->
Cursor Movement

* You will clearly need to move the cursor around your file.
You can move the cursor in command mode.

* vi has many different cursor movement commands. The
four basic keys appear below

- k move up one line
- h line move one character to the left

- | line move one character to the right
-] move down one line

* Yes! Arrow keys also do work. But these makes typing
faster

’ ®®© ZME%TXE

Visual Editor - vi ->
Basic Commands

* Open a file

S vi <file_name>
e How to exit
:q -> Close with out saving.

:wq -> Close the file with saving.

:q!" -> Close the file forcefully with out saving
* Already looks too complicated?

* Try by yourself, let us write a C program

’ ®®© ZME%TXE

Visual Editor - vi ->
Escape / Command Mode

* In command mode, characters you perform actions like moving the
cursor, cutting or copying text, or searching for some particular text

— Search mode

 vi can search the entire file for a given string of text. A string
is a sequence of characters. vi searches forward with the slash
(/) key and string to search. To cancel the search, press ESC
.You can search again by typing n (forward) or N (backward).
Also, when vi reaches the end of the text, it continues
searching from the beginning. This feature is called wrap scan

 Instead of (/), you may also use question (7). That would have
direction reversed

* Now, try out. Start vi as usual and try a simple search. Type

/<string> and press n and N a few times to see where the
cursor goes.

’ ®®© ZME%TXE

Visual Editor - vi ->
Escape / Command Mode

- File mode

* Changing (Replacing) Text

:%s/first/sec - Replaces the first by second every where in
the file

:%s/orange/apple/gc - For all lines in a file, find string
"orange” and replace with string "apple” for each instance
on a line

 File Interactions (edit and read)
.e filename - open another file without closing the current
:r filename - reads file named filename in place

« Editor Settings
:set all - display all settings of your session

’ ®®© ZME%TXE

Command
G

gs

Ctrl a
Ctrl x

(n)gg

’@@@

Visual Editor - vi

Escape / Command Mode - Useful Shortcuts

Operation
Go to last line of the file
Go to first line of the file
Repeat the previous command
Increment number under the cursor by 1
Decrements numbers under the cursor by 1
Joining the two adjacent lines

Move cursor to n' line

2MERTXE

Visual Editor - vi

Editing Mode
Command Mode Name
a Append
A Append
i Insert
I Insert
o Open
0) Open

Insertion Point

just after the current character
end of the current line

just before the current character
beginning of the current line
new line below the current line

new line above the current line

2MERTXE

Visual Editor - vi ->
Editing Mode - Editing Text

* Deleting Text Sometimes you will want to delete some of
the text you are editing. To do so, first move the cursor
so that it covers the first character of the group you want
to delete, then type the desired command from the table

below.
Command Operation
dd For deleting a line
(n)dd For deleting a n lines
X To delete a single character
D Delete contents of line after cursor
dw Delete word
(n)dw Delete n words

’ ®®© ZME%TXE

Visual Editor - vi ->
Visual Mode - Editing Text

* Visual Mode

- Visual mode helps to visually select some text, may be
seen as a sub mode of the command mode to switch

from the command mode to the visual mode type one
of

e v - visual mode

e ctrl+v - GO's to visual block mode.
» d or y Delete or Yank selected text

e | or A Insert or Append text in all lines (visual block
only)

’ ®®© ZME%TXE

Shell Scripting - Basics

Shell Scripting - Basics

Programming Languages

* There are various types of programming languages, compared on various
parameters

 From Embedded system engineer’s view it should be seen how close or how
much away from the hardware the language is

» Based on that view programming languages can be categorized into three
areas:

- Assembly language (ex: 8051)
- Middle level language (ex: C)
- High level / Scripting language (ex: Shell)
» Each programming language offers some benefits with some shortcomings

» Depending on the need of the situation appropriate language needs to be
chosen

» This make language selection is a key criteria when it comes to building real
time products!

’ ®®© ZME%TXE

Shell Scripting - Basics

Programming Languages - A Comparison

t:?agrl:\ae‘ir Assembly C Shell
Speed High Medium Medium
Portability Low Medium High
Maintainability Low Medium High
Size Low Medium Low
Easy to learn Low Medium High

Shell or any scripting language is also called as ‘interpreted’ language as it doesn’t

go through compilation phase. This is to keep the language simple as the purpose is
different than other languages.

’ ®®© ZME%TXE

Shell Scripting - Basics ->
Shell Script

* Any collection of shell commands can be stored
in a file, which is then called as shell script

* Programming the scripts is called shell scripting

» Scripts have variables and flow control
statements like other programming languages

* Shell script are interpreted, not compiled

* The shell reads commands from the script line
by line and searches for those commands on the
system

’ ®®© ZME%TXE

Shell Scripting - Basics

Shell Script - Where to use?

e System Administration e

- Automate tasks

- Repeated tasks
 Development
- Allows testing a limited sub-set
- Testing tools
« Daily usage
- Simple scripts

- Reminders, e-mails etc...

’ ®®© ZME%TXE

Shell Scripting - Basics

Shell Script - Invocation

 Example:
S vi hello.sh
and type the following inside it:
#!/bin/bash
echo “ Hello World”
Then, make the script executable:
S chmod 700 hello.sh
S ./hello.sh
» First line tells Linux to use BASH interpreter

* Second line prints the “Hello world” into standard |/0O

’ ®®© ZME%TXE

Shell Scripting - Basics ->
Variables

« Variables are a way of storing information temporarily.
NAME="Emertxe”
X=10

* A couple of conversions we need to follow

- Variables usually appear in uppercase

- There is no white space between the variable name and the equal sign

« Variable substitution
e Variable assignment

* Bash variables & special variables

’ ®®© ZME%TXE

Shell Scripting - Basics ->
Whitespace & Line-breaks

Bash shell scripts are very sensitive to whitespace & line-
breaks

Because the “keywords” of this programming language are
actually commands evaluated by the shell

Need to separate arguments with whitespaces

Likewise a line-break in the middle of a command will mislead
the shell into thinking the command is incomplete.

Example: x=10; x = 10; x = “ok”; x="0k”

’ ®®© ZME%TXE

Shell Scripting - Basics

Special Characters

Character Meaning

~ The current user's home directory

used to access a variable (e.g. : SHOME)

S
& used to put a command in the background

*

wildcard, matching zero or more characters (e.g. : ls doc_¥)

? wildcard, matching exactly one character (e.g.: ls doc_?)
S{#3 No of arguments passed to shell script

S{@} Value of all arguments passed

S0 contains the name of the script user executed

’ ®®© ZME%TXE

Shell Scripting - Basics ->
Quotes

* Using single quotes causes the variable name to be used
literally, and no substitution will take place.

Svar="test string’
Snewvar="Value of var is Svar’

echo Snhewvar

» Using double quotes to show a string of characters will allow a
ny variables in the quotes to be resolved

Svar=“test string”
Snewvar=“Value of var is Svar”

echo Snhewvar

’ ®®© ZME%TXE

Shell Scripting - Basics

Expressions

« expr: Evaluates simple math on the command line calculator.
* bc: An arbitrary precision calculator language

* Available operators: +, , /, *, %
Example

NUM1=5
NUM2=3

ADD=$ ((${NUM1} + ${NUM2}))
SUB=$((${NUM1} - ${NUM2}))
MUL=$((${NUM1} * ${NUM2}))
DIV=$((${NUM1} / ${NUM2}))
MOD=$((${NUM1} % ${NUM2}))

echo "Addition of two numbers is: ${ADD}"

echo "Substraction of two numbers is: ${SUB}"
echo "Multiplication of two numbers is: ${MUL}"
echo "Division of two numbers is: ${DIV}"

echo "Modulum of two numbers is: ${MOD}"

’ ®®© ZME%TXE

Conditions - if else

Shell Scripting - Basics ->

 The if statement chooses between alternatives each of which

may have a complex test

 The simplest form is the if-then statement

Syntax

if [condition]
then

expression
else

expression
fi

’@@@

Example

NUM1=5
NUM2=3

if [${NUM1} -gt ${NUM2}]

then

echo "NUM1 is greater than NUM2"
else

echo "NUM2 is greater than NUM1"
fi

2MERTXE

Shell Scripting - Basics

Conditions - if else if

* Multiple if blocks can be strung together to make an elaborate
set of conditional responses

Syntax Example
if [condition_a]
then
condition_a is true W%Z?
elif [condition b]
then if [${NUM1} -eq ${NUM2} 1
T 44 : then
1 Condltlon—b 1s true echo "NUM1 is equal to NUM2"
eLse elif [${NUM1} -gt ${NUM2}]
both false then
fi echo "NUM1 is greater than NUM2"

else

echo "NUM1 is less than NUM2"

fi

’ ®®© ZME%TXE

Shell Scripting - Intermediate

Shell Scripting - Intermediate
String Tests

« String comparison, Numeric comparison, File operators and logical operators

* Comparison operations are provided below
Example

“Enter the first string”

Operator Meaning STR1
“Enter the second string”
= Compare if two strings STR2
are equal

-z ${STR1}]; then
echo "First string is empty"

1= Compare if two strings

are not equal echo "First string is not empty"

-n Evaluate if string ' -n ${STR2}]; then
length is greater than echo "First string is not empty"
Z€T0 echo "First string is empty"

-Z Evaluate if string

${STR1} = ${STR2}]; then

length is equal to zero echo "Both strings are equal"

echo "Both strings are not equal”

’ ®®© SMERTXE

Operator Meaning

-eq

Compare if two
numbers are equal

_ge

Compare if one number
is greater than are
equal to num

-le

Compare if one number
is less than or equal to
a num

-ne

Compare if two
numbers are not equal

-gt

RFowWwoo~NOoOUT, WN B

Compare if one
number is greater than
another number

o

-It

Compare if one
number is less than ano
ther number

’@@@

Example

Shell Scripting - Intermediate

Numeric Tests

NUM1=5
NUM2=3

if [${NUM1} -gt ${NUM2}]

then
else

fi

echo

echo

"NUM1 is greater than NUM2"

"NUM2 is greater than NUM1"

2MERTXE

Logical Operators

Operator Meaning

, Negate (NOT) a logical
; expression

Logically AND two
logical expression

Logically OR two logical
expressions

’@@@

Shell Scripting - Intermediate

Example

OWoo~NoOoUTr, WN

echo “Enter the first number A”
read A

echo “Enter the second number B ”
read B

echo “Enter the third number C ”
read C

if [${A} -gt ${B} -a ${A} -gt ${C} 1; then
echo "A is the greatest of all"

[${B} -gt ${A} -a ${B} -gt ${C}]; then

echo "B is the greatest of all"

[${C} -gt ${A} -a ${C} -gt ${B} I; then

echo "C is the greatest of all”

echo "Invalid Input"

2MERTXE

Shell Scripting - Intermediate.)
Loop - for

« Sequential loop with expressions

* First arithmetic expr EXPR1 is evaluated;EXPR2 evaluated
repeatedly until it evaluates to 0; Each time EXPR2 is evaluated to
a non-zero value, statements are executed & EXPR3 is evaluated

Syntax Example
for ((exprl; expr2; expr3)) %
do
Code Block 3 for ((i=1; 1<=5; 1i++))
4 do

done 5 echo "Loop counter is ${i}"
6 done

’ ®®© ZME%TXE

Shell Scripting - Intermediate

Loop - while

* The structure is a looping structure. Used to execute a set of commands
while a specified condition is true

* The loop terminates as soon as the condition becomes false. If condition
never becomes false, loop will never exit

« Any valid conditional expression will work in the while loop.

Syntax Example
while [condition]
do _
Code Block 00P=1
done while [${LOOP} -le 5]

do

echo "Looping : ${LOOP}"
LOOP=$((${LOOP} + 1))

OCOoONOUILE, WN

done

’ ®®© ZME%TXE

Shell Scripting - Intermediate.)
Case Statements

* The case statement compares the value of the variable
(Svar in this case) to one or more values

 Once a match is found, the associated commands are
executed and the case statement is terminated

» Used to execute statements based on specific values

« Often used in place of an if statement if there are a large
number of conditions.

* Each set of statements must be ended by a pair of
semicolon

* *)is used for not matched with list of values

’ ®®© ZME%TXE

Shell Scripting - Intermediate

Case Statements

Syntax Example
case ${VAR} in
value_1) echo “Enter a number:”
commands; read NUM
'
value 2) case ${NUM} in
commands; 1)
r echo "You entered One"
*) '
. 2) echo "You entered Two" ;;
??mmands, *) echo "Obey my orders please”
r G
esac .

’ ®®© ZME%TXE

Shell Scripting - Intermediate

Functions

» Writing functions can greatly simplify a program
* Improves modularity, readability and maintainability
 However speed will get slowed down

« Arguments are accessed as $1, $2, S3...

Syntax Example
function name() ;
{ 3 function sum()
<command> 4 |
<statments> 5 x="expr $1 + $2°
<expression> 6 echo $x
} 7}
8
9 y=sum 5 3°

10 echo "The sum is 5 and 3 1is $y"
11 echo "The sum is 6 and 2 is sum 6 2 "

’ ®®© ZME%TXE

Shell Scripting - Intermediate.)
Arrays

* An array is a variable containing multiple values may be of
same type or of different type

* There is no maximum limit to the size of an array

e Array index starts with zero

’ ®®© ZME%TXE

Shell Scripting - Intermediate

Arrays

Syntax

declare -a array_name=(element1 element2 element3)

Here declare -a is optional, arrays can be declared without that also

Example

declare LINUX DISTROS=('Debian' 'Redhat' 'Ubuntu' 'Suse' 'Fedora');

echo "Number of elements in the array: ${#LINUX DISTROS[@]}"
echo "Printing elements of array in one shot: ${LINUX DISTROS[@]}"
echo "Printing elements of array in one shot: ${LINUX DISTROS[*]}"
echo "Printing elements of array in using a loop:"
for ((1i = 0; 1 < ${#LINUX DISTROS[@]}; i++))
do
echo ${LINUX DISTROS[$1]}
done

’ ®®© ZME%TXE

Shell Scripting - Intermediate.)
Command Line Arguments

» Shell script can accept command-line arguments & options
just like other Linux commands

« Within your shell script, you can refer to these arguments as
$1,$2,$3,.. & so on.

 Then the command line arguments are executed like

 Read all command line arguments and print them

’ ®®© ZME%TXE

Shell Scripting - Intermediate

Command Line Arguments

Example

if [$# 1= 2]
then
echo "Usage: Pass 3 arguments"”

exit 0
fi

Ooo~NOUT,L, WN -

echo "The arguments of the script you passed are:"

echo "Total number of arguments you passed are : $#"
echo "The name of the script is : $0"
echo "The first argument is : $1°
echo "The second argument is : $2"

’ ®®© ZME%TXE

Linux Systems - The Bigger Picture

Linux System - A Bigger Picture
How things fit together?
cons1rr]neal1lnds sc?ihpetlilng + @ = []);(S;Lrg]ial\:n;s

e Shell commands: ls, date, whoami etc.

* Shell scripting: Operators, Loop, Arrays etc..

« Editor (vi): Insertion, commands, visual mode

Now let us learn some more Linux shell commands (advanced) for making

our shell scripts more powerful

’ ®®© ZME%TXE

Linux System - A Bigger Picture
Advanced Shell Commands

User
/ Interface \
Pattern S
matching commands

’ ®®© ZME%TXE

Advanced Shell Commands

Shell Commands - Advanced

User Specific Commands

* All Accesses into a Linux System are through a User
e Super user (root) will have higher privileges

 User related Shell commands

Command Meaning
useradd Create user
userdel Delete user

su - [username] Start new shell as different user

finger User information lookup
passwd Change or create user password
who To find out who is logged in
whoami Who are you

’ ®®© ZME%TXE

Shell Commands - Advanced ->
Remote Login and Remote Copy
» ssh is a program for logging into a remote machine

and for executing commands on a remote machine.

S ssh username®ipaddress
» scp copies files between hosts on a network.

S scp filename username@ipaddress:/path/

’ ®®© ZME%TXE

mailto:username@ipaddress

Shell Commands - Advanced ->
File Related - Redirection

* Out put redirection (>)

Sls > /tmp/outputfile
» Redirecting to append (>>)

Sls -l >> /tmp/outputfile

e Redirecting the error (2>)

S s 2> /tmp/outputfile

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Related - Pipe

« Apipe is a form of redirection that is used in Linux
operating systems to send the output of one program to
another program for further processing.

* A pipe is desighated in commands by the vertical bar
character

S Is -al /bin | less

’ ®®© ZME%TXE

Shell Commands - Advanced
File Related

* Every thing is viewed as a file in Linux. Even a Directory is a
file.

 Basic Shell Command Set

Command Meaning

cp <source> <dest> Copy file from one to another

mv <source> <dest> Rename a file

rm <file> Remove a file
stat File related statistics (i-node)
In Linking between files (-s option for soft link)

’ ®®© ZME%TXE

File Related

Shell Commands - Advanced

Command

Meaning

mkdir <dir_name>

Make directory

rmdir <dir_name>

Remove a particular directory

touch Change file timestamps

wcC Counts the number of lines in a file

cat Display contents of the file in standard output
more Display contents, navigate forward

head Display first 10 lines of the file (-n to change)
tail Display last 10 lines of the file (-n to change)
sort Sort lines of text files

’@@@

2MERTXE

Shell Commands - Advanced
File Listing

user@user:~] ls -1
total 12

drwxrwxr-x
brw-r--r--
Crw-r--r--

user : A-Direcory

root : block file

root : character file

user : link to regular file -> regular file
user : named pipe

user : regular file

user ; server

user : server socket

L rwxX rwx rwx
prw-rw-r--
-rwW-rw-r--
- TWXTIWXT - X
STrWXrwXxr-X

H R EHEREERRBN

ermissions owner file created date file name
P & group size & time

’ ®®© ZME%TXE

Shell Commands - Advanced
File Listing - Types

user@user:~] ls -1
total 12

< —————————————————————————— drwxrwxr-x
< ~~~~~~~~~~~~~~~~~~~~~~~~~~ brw-r--r--
< —————————————————————————— Crw-r--r--
< ——————————————————————————— Lrwxrwxrwx

prw-rw-r--

Plain Text B = T'WXTrwXr-X
oo BRI < crxr-x

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Listing - Permission

user@user:~] ls -1

total 1

=-rwXrwxr-X 2 user user

. Value used to Set
> Execute 001 - 1

S » Write 010 - 2
S » Read 100 - 4

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Listing

user@user:~] ls -1

total 1

=-rwXrwxXrwx 2 user user

user group others

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Permissions

 chmod - Change file permissions

e chown - Change file owner
 chmod [ug+r, 746] file.txt

* chown -R user:group [filename | dir]

’ ®®© ZME%TXE

find

Syntax

Shell Commands - Advanced

find <where-to-look> <criteria> <what-to-do>

Find options

Meaning

find . -print

Find all files from current directory & sub-
directory & print their path

find . -name *.sh

Find all files that are having *.sh extension
starting from current directory

find / -type d -name tech

Search for directories with name ‘tech’ from
the ‘root’ directory

find . -type f -empty

Find all files that are empty in current
directory

’@@@

2MERTXE

I Shell Commands - Advanced
cut

Syntax

cut <option> <file>
Option ‘-c’ character

Option ‘-d’ delimiter and much more

cut options

Meaning

cut -c3 <file>

Outputs third character of every line of <file>

cut -c1-3 <file>

Outputs the first three characters of every line
of <file>

cut -d':" -f1 /etc/passwd

Outputs the first field of the file /etc/passwd,
where fields are delimited by a colon (:"). The
first field of /etc/passwd is the username, so
this will output every username in

the passwd file

cut -d':' -f1,6 /etc/passwd

Output first and sixth fields of /etc/passwd

’@@@

2MERTXE

Shell Commands - Advanced
split

Syntax

split <option> <file> <newfile>
Option ‘-b’ bytes

Option ‘-I’ lines and much more

split options Meaning

split -b <file> <newfile> Split ‘b’ bytes from ‘file’ and put them into
newfileaa, newfileab, newfileac etc..

split -l <file> <newfile> Split <file> into ‘I’ number of lines and put
them into newfileaa, newfileab, newfileac etc.

There are three more file related commands as follows:
« cmp - Compares two files and stops where difference is found

+ diff - Reports differences between two files
* uniq - Reports/Filters repeated pattern in a file
Let us read through the man pages and understand them (Self-study)

’ ®®© ZME%TXE

Shell Commands - Advanced
tr

Syntax

tr <options> <input>

tr options Meaning

tr -d <char> Delete occurrences of given character
tr -s <char> Squeeze repetition characters
:upper: Upper case characters

:lower: Lower case characters

:space: Space character

:digit: Numerical numbers

’ ®®© ZME%TXE

Shell Commands - Advanced
tr

Delete all occurrences of character ‘h’

S echo hello how are you | tr -d h

ello ow are you

Replace all spaces with tabs

S echo "whats up with you guys” | tr [:space:] '\t'
whats up with you guys

Remove all numbers from the input

S echo "my age is 99" | tr -d [:digit:]

my age is

Replace all lower case with upper case

S tr abcdefghijkimnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ
hello

HELLO

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Compression

» Compression is needed to conserve the disk space

 When there is a need to send large files as an attachment via
the email, it is good practice to compress first

 Compression & Decompression utilities - gzip & gunzip(.gz)
* The degree of compression depends on

- The type of the file

- Its size

- Compression program used
 Example

- Html files compress more

- GIF & JPEG image files compress very less, as they are already in
compressed form

’ ®®© ZME%TXE

Shell Commands - Advanced

File Compression - Flow

¥

@
file

file

file.gz

¥
gzip
¥
Compression flow De-compression flow

Recursive compression and de-compression (-r option), will
come handy

gzip -r <directory> : To compress whole directory
gunzip -r <directory> : To de-compress whole directory

’ ®®© ZME%TXE

Shell Commands - Advanced

File Compression - Example

Compression
Input Program Output
file gzip file file.gz
sample.html gzip sample.html sample.html.gz

De-compression

Input Program Output
file.gz gunzip file.gz file
sample.html.gz gunzip sample.html.gz sample.html

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Archival

» Used for creating disk archive that contains a group of files or
an entire directory structure

 An archive file is a collection of files and directories that are
stored in one file

* Archive file is hot compressed, it uses the same amount of disk
space as all the individual files and directories

* |n case of compression, compressed file occupies lesser space

 Combination of archival & compression also can be done

* File archival is achieved using ‘tar’ with the following commands:

 tar -cvf <archive name> <file-names>
 tar -xvf <archive name>

’ ®®© ZME%TXE

Shell Commands - Advanced ->
File Archival - Flow

@
De-compression
$
¥
$
file3

filel, file2,
file3

tar -cvf

Archival file.tar

Compression [epAlomil[=He=1g

file.tar.gz

’ ®®© ZME%TXE

Shell Commands - Advanced ->
Regular Expressions

» Regular expressions = search (and
replace/modify/remove) pattern

* In theoretical computer science regular expressions are
called as regex or regexp

* |t is a sequence of characters that forms a search
pattern using some special characters

* Popular applications in Linux (Vi editor, Grep, Sed, Lex
& Yacc etc..) extensively use regular expressions

» Extensively used in compiler design and implementation

Our idea is to understand them from Linux commands

’ ®®© ZME%TXE

Shell Commands - Advanced ->
Regular Expressions

« Each character in a regular expression is either understood to
be a meta-character with its special meaning

* Or aregular character with its literal meaning

 Together they form a pattern. Some popular & most frequently
used examples are provided below

Meta-character Meaning

? Zero or one occurrence
* Zero or more occurrence
+ One or more occurrence

’ ®®© ZME%TXE

Pattern Matching - grep

Shell Commands - Advanced

» Get Regular Expression And Print (GREP)

* Grep is pattern matching tool used to search the name input

file
Syntax

grep <reg-exp> <file>

Option

Meaning

grep a* <file>

Search for lines starting with name ‘a’ in <file>

grep -x <pattern> <file>

Exactly match for <pattern> in <file>

grep -v <pattern> <file>

Print non-matching of <pattern> in <file>

’@@@

2MERTXE

Shell Commands - Advanced
Pattern Matching - sed

e Stream Editor (SED)

* Sed perform basic text transformations on an input stream

* |t can be a file, or input from a pipe

Syntax

sed <reg-exp> <file>

Option Meaning

sed -n ‘1,5p’ <file> Print line numbers ranging from 1-5 in the
given input file

sed ‘1,5d’ <file> > out Delete line number ranging from 1-5 in the
given input file and re-direct into another
file called out

sed ‘s/<old_string>/<new_string>/’ Replace <old_string> with <new_string> in
<file> input <file>

’ ®®© ZME%TXE

I Stay Connected

About us: Emertxe is India’s one of the top IT finishing schools & self learning kits provider. Our primary
focus is on Embedded with diversification focus on Java, Oracle and Android areas

Emertxe Information Technologies,

No-1, 9th Cross, 5th Main,
Jayamahal Extension,
Bangalore, Karnataka 560046

T: +91 80 6562 9666
E: training@emertxe.com

))

°e slideshare

Present Yourself

https: //www.facebook.com/Emertxe https://twitter.com/EmertxeTweet https://www.slideshare.net/EmertxeSlides

2MERTXE

https://www.facebook.com/Emertxe
https://twitter.com/EmertxeTweet
https://www.slideshare.net/EmertxeSlides
https://www.slideshare.net/EmertxeSlides
mailto:training@emertxe.com

Thank You

	header
	introduction_header
	intro_1
	intro_2
	intro_3
	intro_4
	intro_5
	intro_6
	intro_7
	intro_8
	Slide 11
	intro_9
	intro_10
	Slide 14
	Slide 15
	Slide 16
	system_calls_header
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	footer

