
R-Pi

Team Emertxe

Websockets - API
Introduction

Websockets
Introduction

● Web sockets are defined as a two-way communication between the servers and the clients,

which mean both the parties communicate and exchange data at the same time.

● The key points of Web Sockets are true concurrency and optimization of performance,

resulting in more responsive and rich web applications.

Websockets
Features

● Protocol is being standardized, which means real time communication between web servers

and clients is possible with the help of this protocol.

● Web sockets are transforming to cross platform standard for real time communication

between a client and the server.

● This standard enables new kind of the applications. Businesses for real time web

application can speed up with the help of this technology.

● The biggest advantage of Web Socket is it provides a two-way communication (full duplex)

over a single TCP connection.

Websockets
URL

● HTTP has its own set of schemas such as http and https. Web socket protocol also has

similar schema defined in its URL pattern.

● The latest specification of Web Socket protocol is defined as RFC 6455 – a proposed

standard.

● RFC 6455 is supported by various browsers like Internet Explorer, Mozilla Firefox,

Google Chrome, Safari, and Opera.

Websockets - API
Duplex Communication

Websockets
 Its Need

● Internet was conceived to be a collection of Hypertext Mark-up Language (HTML) pages

linking one another to form a conceptual web of information.

● During the course of time, static resources increased in number and richer items, such

as images and began to be a part of the web fabric.

● Server technologies advanced which allowed dynamic server pages - pages whose content

was generated based on a query.

● Soon, the requirement to have more dynamic web pages lead to the availability of Dynamic

Hypertext Mark-up Language (DHTML).

Websockets
 Its Need

● All thanks to JavaScript. Over the following years, we saw cross frame communication in

an attempt to avoid page reloads followed by HTTP Polling within frames.

● However, none of these solutions offered a truly standardized cross browser solution to

real-time bi-directional communication between a server and a client.

● This gave rise to the need of Web Sockets Protocol. It gave rise to full-duplex

communication bringing desktop-rich functionality to all web browsers.

Websockets - API
Functionalities

Websockets
Functionalities

Websockets
 Functionalities

● Web Sockets provide a connection between the web server and a client such that both the

parties can start sending the data.

● The steps for establishing the connection of Web Socket are as follows −

➢ The client establishes a connection through a process known as Web Socket

handshake.

➢ The process begins with the client sending a regular HTTP request to the server.

➢ An Upgrade header is requested. In this request, it informs the server that request

is for Web Socket connection.

➢ Web Socket URLs use the ws scheme. They are also used for secure Web Socket

connections, which are the equivalent to HTTPs.

Websockets - API
Roles

Websockets
 Events

● There are four main Web Socket API events

➢ Open

➢ Message

➢ Close

➢ Error

● Each of the events are handled by implementing the functions like onopen, onmessage,

onclose and onerror functions respectively.

● It can also be implemented with the help of addEventListener method.

Websockets
Actions

● Events are usually triggered when something happens.

● On the other hand, actions are taken when a user wants something to happen.

● Actions are made by explicit calls using functions by users.

● The Web Socket protocol supports two main actions,

➢ send()

➢ close()

Websockets
Opening Connections

● Once a connection has been established between the client and the server, the open event

is fired from Web Socket instance.

● It is called as the initial handshake between client and server.

● The event, which is raised once the connection is established, is called the onopen.

● Creating Web Socket connections is really simple.

● All you have to do is call the WebSocket constructor and pass in the URL of your server.

// Create a new WebSocket.
var socket = new WebSocket('ws://echo.websocket.org');

Websockets
Opening Connections

● onopen refers to the initial handshake between client and the server which has lead to

the first deal and the web application is ready to transmit the data.

socket.onopen = function(event) {

 console.log(“Connection established”);

 // Display user friendly messages for the successful establishment of connection

 var.label = document.getElementById(“status”);

 label.innerHTML = ”Connection established”;

}

The demo of the Web Socket connection established is documented in the given

URL − https://www.websocket.org/echo.html

Websockets
Error handlings

● Once a connection has been established between the client and the server, an open event

is fired from the Web Socket instance.

● Error are generated for mistakes, which take place during the communication.

● It is marked with the help of onerror event.

● Onerror is always followed by termination of connection.

● The onerror event is fired when something wrong occurs between the communications.

● The event onerror is followed by a connection termination, which is a close event.

● A good practice is to always inform the user about the unexpected error and try to

reconnect them.

Websockets
Send + Recieve Msgs

● The Message event takes place usually when the server sends some data.

● Messages sent by the server to the client can include plain text messages, binary data,

or images. Whenever data is sent, the onmessage function is fired.

● This event acts as a client's ear to the server.

● Whenever the server sends data, the onmessage event gets fired.

● It is also necessary to take into account what kinds of data can be transferred with the

help of Web Sockets.

● Web socket protocol supports text and binary data.

● In terms of Javascript, text refers to as a string, while binary data is represented

like ArrayBuffer.

Websockets
Working

● A Web Socket server is a simple program, which has the ability to handle Web Socket

events and actions.

● It usually exposes similar methods to the Web Socket client API and most programming

languages provide an implementation.

Websockets
Working: Connecting to the Web Server

● The Web Socket server works in a similar way to the Web Socket clients.

● It responds to events and performs actions when necessary.

● Regardless of the programming language used, every Web Socket server performs some

specific actions.

● It is initialized to a Web Socket address. It handles OnOpen, OnClose, and OnMessage

events, and sends messages to the clients too.

Websockets - API
Advantages

Websockets
Advantages

● Web Socket solves a few issues with REST, or HTTP in general

➢ Bidirectional

➢ Full Duplex

➢ Single TCP Connection

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

