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MQTT
Introduction

● MQTT is a lightweight publish/subscribe messaging protocol designed for M2M (machine to 

machine) telemetry in low bandwidth environments

● It was designed by Andy Stanford-Clark (IBM) and Arlen Nipper in 1999 for connecting Oil 

Pipeline telemetry systems over satellite

● MQTT stands for MQ Telemetry Transport but previously was known as Message Queuing 

Telemetry Transport

● MQTT is fast becoming one of the main protocols for IOT (internet of things) deployments



MQTT
Versions

● There are two versions of MQTT

- v3.1

- v5 

● The original MQTT is designed for TCP/IP networks

● MQTT-SN which was specified in around 2013, and designed to work over UDP, ZigBee and 

other transports



MQTT
Working

How MQTT works: Client Connections

● Is a messaging protocol

● It was designed for transferring messages

● Uses a publish and subscribe model

● This model makes it possible to send messages to 0,1 or multiple clients

● In MQTT a publisher publishes messages on a topic and a subscriber must subscribe to 

that topic to view the message

● There is no direct connection between the broadcaster and the viewer



MQTT
Working: Analogy

● A TV / Radio broadcaster broadcasts a TV / Radio program using a specific channel and a 

viewer tunes into this channel to view the broadcast



MQTT
Publish Subscribe Model

● MQTT requires the use of a central Broker



MQTT
Working: Imp Points

● Clients do not have addresses like in email systems, and messages are not sent to 

clients

● Messages are published to a broker on a topic

● The job of an MQTT broker is to filter messages based on topic, and then distribute them 

to subscribers

● A client can receive these messages by subscribing to that topic on the same broker

● There is no direct connection between a publisher and subscriber

● All clients can publish (broadcast) and subscribe (receive)

● MQTT brokers do not normally store messages



MQTT
Client-Broker: Connections

● MQTT uses TCP/IP to connect to the broker

● Most MQTT clients will connect to the broker and remain connected even if they aren’t 

sending data

● Connections are acknowledged by the broker using a Connection acknowledgement message

● MQTT clients publish a keepalive message at regular intervals (usually 60 seconds) which 

tells the broker that the client is still connected



MQTT
The Client Name

● All clients are required to have a client name

● The client name is used by the MQTT broker to track subscriptions etc

● Client names must also be unique

- If you attempt to connect to an MQTT broker with the same name as an existing client 

  then the existing client connection is dropped

- Because most MQTT clients will attempt to reconnect following a disconnect this can  

  result in a loop of disconnect and connect



MQTT
Clean Sessions

● MQTT clients will usually by default establish a clean session with a broker

● A clean session is one in which the broker isn’t expected to remember anything about the 

client when it disconnects

● With a non clean session the broker will remember client subscriptions and may hold 

undelivered messages for the client

● However this depends on the Quality of service used when subscribing to topics and the 

quality of service used when publishing topics



MQTT
Last will Messages

● The idea of the last will message is to notify a subscriber that the publisher is 

unavailable due to network outage

● The last will message is set by the publishing client on a topic

● The message is stored on the broker and sent to any subscribing client if the connection 

to the publisher fails

● If the publisher disconnects normally the last Will Message is not sent

● The will messages is including with the connect request



Understanding MQTT Topics



MQTT TOPICS
Introduction

● MQTT Topics are structured in a hierarchy similar to folders and files in a file system 

using the forward slash ( / )as a delimiter

● Using this system you can create a user friendly and self descriptive naming structures 

of you own choosing

● Topic names are:

● Case sensitive

● use UTF-8 strings

● Must consist of at least one character to be valid



MQTT TOPICS
Introduction

● Except for the $SYS topic there is no default or standard topic structure

● That is there are no topics created on a broker by default, except for the $SYS topic

● All topics are created by a subscribing or publishing client, and they are not permanent

● A topic only exists if a client has subscribed to it, or a broker has a retained or last 

will messages stored for that topic



MQTT TOPICS
The $SYS topic

● This is a reserved topic and is used by most MQTT brokers to publish information about 

the broker

● They are read-only topics for the MQTT clients. There is no standard for this topic 

structure



MQTT TOPICS
Subscribing to Topics

● A client can subscribe to individual or multiple topics

● When subscribing to multiple topics two wildcard characters can be used

# (hash character) – multi level wildcard

+ (plus character) -single level wildcard

● Wildcards can only be used to denote a level or multi-levels 

i.e /house/# and not as part of the name to denote multiple characters 

e.g. hou# is not valid



MQTT TOPICS
Topic naming Examples

● Valid Topic subscriptions: Single topic subscriptions

/

/house

house/room/main-light

House/room/side-ligh

Using Wildcards

Subscribing to topic house/# Subscribing to topic house/+/main-light

Valid:

house/room1/main-light
house/room1/alarm
house/garage/main-light
house/main-door

Valid: 

house/room1/main-light
house/room2/main-light
house/garage/main-light

Invalid:

house/room1/side-light
house/room2/side-light



MQTT TOPICS
Publishing the Topics

● A client can only publish to an individual topic. That is, using wildcards when 

publishing is not allowed

● Example

To publish a message to two topics you need to publish the message twice



MQTT TOPICS
Creation: Topics

● Topics are created dynamically when,

Someone subscribes to a topic

Someone publishes a message to a topic with the retained message set to True



MQTT TOPICS
Removal: Topics

● Topics are removed when,

When the last client that is subscribing to that broker disconnects, and clean session 
is true

When a client connects with clean session set to True



MQTT TOPICS
Republishing: Topics

● Topics are republished when,

This is likely to be done when changing or combining naming schemes

The idea is that a client would subscribe to a topic

● Example: hub1/sensor1 and republish the data using a new topic naming of 
house1/main-light



MQTT Publish and Subscribe



MQTT Publish and Subscribe
Introduction

● The process of sending messages is called publishing

● To receive messages an MQTT client must subscribe to an MQTT topic

● Basics

● A client is free to publish on any topic it chooses. 

● Brokers can restrict access to topics

● A client cannot publish a message to another client directly and doesn’t know if any 
clients receive that message

● A client can only publish messages to a single topic, and cannot publish to a group of 
topics

● However a message can be received by a group of clients if they subscribe to the same 
topic



MQTT Publish and Subscribe
Message Flow and QOS on Published Messages

● MQTT supports 3 QOS levels 0,1,2

QOS -0: Default and doesn’t guarantee message delivery.

QOS -1: Guarantees message delivery but could get duplicates.

QOS -2: Guarantees message delivery with no duplicates.

● A message is published using one of these levels with QOS level 0 being the default

● If you want to try and ensure that the subscriber gets a message even though they might 

not be online then you need to publish with a quality of service of 1 or 2



MQTT Publish and Subscribe
Message Flow and QOS on Published Messages



MQTT Publish and Subscribe
What Happens?

● What happens to the published message after the subscriber receives it?

● What happens to the published message if there are no subscribers?



MQTT Publish and Subscribe
Subscribing To Topics

● To receive messages on a topic you will need to subscribe to the topic or topics

● When you subscribe to a topics you also need to set the QOS of the topic subscription

● The QOS levels and their meaning are the same as those for the published messages

● When you subscribe to a topic or topics you are effectively telling the broker to send you 

messages on that topic

● To send messages to a client the broker uses the same publish mechanism as used by the 

client

● You can subscribe to multiple topics using two wildcard characters (+ and #)

● All subscriptions are acknowledged by the broker using a subscription acknowledge message 

that includes a packet identifier that can be used to verify the subscription



MQTT: Clients



MQTT Clients
Introduction

● Because MQTT clients don’t have addresses like email addresses, phone numbers etc. you 

don’t need to assign addresses to clients like you do with most messaging systems



MQTT: Brokers / Servers



MQTT Brokers
Introduction

● There are many MQTT brokers available that you can use for testing and for real 

applications

● There are free self hosted brokers , the most popular being Mosquitto and commercial 

ones like HiveMQ

● If you don’t want to install and manage your own broker you can use a cloud based broker 

from Cloud service providers like IBM, Microsoft (Azure) etc

● Eclipse has a free public MQTT broker and COAP server that you can also use for testing. 

The address is iot.eclipse.org and the port is 1883 or 8883(SSL)



MQTT: Security



MQTT Security
Introduction

● MQTT supports various authentications and data security mechanisms

● It is important to note that these security mechanisms are configured on the MQTT 

broker, and it is up to the client to comply with the mechanisms in place



THANK YOU
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