Linux Internals & Networking

System programming using Kernel interfaces

Team Emertxe

Contents

Linux Internals & Networking
Contents

Wy

.Introduction

.Transition to OS programmer

System Calls

.Process

APC

Signals

.Networking

.Threads

.Synchronization

.Process Management)
®emory Management 2MERTXE

Process

Process

.Running instance of a program is called a PROCESS

.On a single-user system, a user may be able to run several programs at one
time:

—-a word processor,
-a Web browser,
—gcc compiler etc...
A process includes
-the stack

—a data section

-a heap

' IO, ZME%TXE

Process

.Running instance of a program is called a PROCESS

JIf you have two terminal windows showing on your screen, then you are
probably running the same terminal program twice-you have two terminal
processes

.Each terminal window is probably running a shell; each running shell is another
process

When you invoke a command from a shell, the corresponding program is
executed in a new process

.The shell process resumes when that process complete

' IO, ZME%TXE

Team Emertxe

Process
vs Program

A program is a passive entity, such as file containing a list of instructions
stored on a disk

.Process is a active entity, with a program counter specifying the next
Instruction to execute and a set of associated resources.

A program becomes a process when an executable file is loaded into
main memory

.One program can be several processes

—Consider multiple users executing the same program

Factor Process Program
Storage Dynamic Memory Secondary Memory
State Active Passive

’ ®®© ZME%TXE

Process

vs Program

s 6 o

void do_somthing() $

{
int local_2 = 5; ﬁ
local_2 = local_2 + 1;

3

DN heap
int main()

{ global_1 data
char *local_1 = malloc(100); global_2 S
do_somthing(); .start main 9

, .call do_somthing | codec

} &

6
(0p)

' ®®© ZME%TXE

Team Emertxe

Process
State Transition Diagram

admitted terminated

interrupted

running

scheduler dispatch
I/O or event completion I/O or event walit

waiting

)

2MERTXE

Process
State Transition Diagram

Priority
Round Robin
FCFS
Preemptive

interrupted

running

scheduler dispatch

I/O or event completion I/O or event walit

waiting
I/O: Keyboard
Even: Signal

)

2MERTXE

Process
States

A process goes through multiple states ever since it is created by the OS

State Description

New The process is being created

Running Instructions are being executed

Waiting The process is waiting for some event to occur
Ready The process is waiting to be assigned to processor
Terminated The process has finished execution

'@@@

)

2MERTXE

Process
Descriptor

Wy

— OS kernel must have a clear picture of what each task is doing.

.T0 manage tasks:

— Task's priority
— Whether it is running on the CPU or blocked on some event
- What address space has been assigned to it

— Which files it is allowed to address, and so on.

.Usually the OS maintains a structure whose fields contain all the
Information related to a single task

’ ®®© ZME%TXE

Process
Descriptor (PCB / TCB)

JInformation associated with each process.

Pointer Process State
-Process state
Process ID .running, waiting, etc
Program Counter —-Program counter
Registers Jocation of instruction to next execute

M Limit '
emory Limits -CPU registers

List of Open Files _ _
.contents of all process centric registers

—CPU scheduling information
.priorities, scheduling queue pointers

-Memory-management information

.memory allocated to the process

—~Accounting Information

PCB: Process Control Block / TCB: Task Control Block

-1/O Status Information

' @ @ @ .1/O devices allocated to process, list of open ﬁleiM E%TXE

Process
Scheduling

.Maximize CPU use, quickly switch processes onto CPU for time sharing
.Process scheduler selects among available processes for next execution on CPU

-Maintains scheduling queues of processes
.Job queue — set of all processes in the system

-Ready queue - set of all processes residing in main memory, ready and waiting to execute

.Device queues - set of processes waiting for an I/O device

.Processes migrate among the various queues

' ®®© ZME%TXE

Process

ready
queue

mag
tape
unit O

mag
tape
unit 1

disk
unit 0

terminal
unit 0

'@@@

Ready & Various 1/0O Device Queues

queue header PCB, PCB,
head 2 > 4
tail registers registers
tail ——=
head T——=
il 4 PCB, PCB,, PCB;
/ —_— —_— =
head 4
Gl .\
PCB;
head —T—> - —
@l

)

2MERTXE

Process
Scheduling — Queueing Diagram

Queueing diagram represents gueues, resources, flows

_____, ready queue CPU >
/O queue *=—— /O request [——
time slice :
expired
child fork a
@7 child)
interrupt wait for an
OCCUrS interrupt

' ®®© ZME%TXE

Process
Descriptor — State Field

State field of the process descriptor describes the state of process.

.The possible states are:

State Description
TASK _RUNNING Task running or runnable
TASK_INTERRUPTIBLE | process can be interrupted while sleeping

TASK _UNINTERRUPTI | process can't be interrupted while sleeping

BLE
TASK _STOPPED process execution stopped
TASK ZOMBIE parent is not issuing wait()

’ ®®© ZME%TXE

Process
Descriptor - ID

Wy

.Each process in a Linux system is identified by its unique process ID,
sometimes referred to as PID

.Process IDs are numbers that are assigned sequentially by Linux as
new processes are created

.Every process also has a parent process except the special init process

.Processes in a Linux system can be thought of as arranged in a tree,
with the init process at its root

.The parent process ID or PPID, is simply the process ID of the process’s
parent

’ ®®© ZME%TXE

Process

Schedule
P1 P2 P3 P4
Stack Stack Stack Stack
I Il I I
i i i i
Heap Heap Heap Heap
Data Data Data Data
& Code Code Code Code
D
wn
©
Q
8 \ \ \\4 \
Addr PS Addr PS Addr PS Addr PS
PID PID PID PID
PC PC PC PC
REG REG REG REG
Memory Memory Memory Memory
Files Files Files Files
>
)
>
D
(2]
E),
Q
0
o))

2MERTXE

Process
Active Processes

Wy

.The ps command displays the processes that are running on your
system

.By default, invoking ps displays the processes controlled by the terminal
or terminal window in which ps is invoked

.For example (Executed as “ps —aef”):

Process
ID

Parent
Process
ID

’ ®®© ZME%TXE

Process
Context Switching

Wy

Switching the CPU to another task requires saving the state of the old
task and loading the saved state for the new task

.The time wasted to switch from one task to another without any
disturbance is called context switch or scheduling jitter

After scheduling the new process gets hold of the processor for its
execution

' ®®© ZME%TXE

Context Switching

process P, operating system process P,

Interrupt or system call

* Y

executing

save state into PCB,
idle
reload state from PCB; \
idle Interrupt or system call 1 executing
save state into PCB;
idle
reload state from PCB,

\ 4 — |
A

executing

' ®®© ZME%TXE

Process
Creation

Wy

.Two common methods are used for creating new process

~Using system():

-Relatively simple but should be used sparingly because it is inefficient and has
considerably security risks

-Using fork() and exec():

.More complex but provides greater flexibility, speed, and security

' ®®© ZME%TXE

Process
Creation - system()

Wy

.Because the system function uses a shell to invoke your command, it's
subject to the features and limitations of the system shell

It creates a sub-process running the standard shell

Hands the command to that shell for execution

.The system function in the standard C library is used to execute a
command from within a program

.Much as if the command has been typed into a shell

’ ®®© ZME%TXE

Process
Creation - fork()

Wy

fork makes a child process that is an exact copy of its parent process

-When a program calls fork, a duplicate process, called the child process,
IS created

.The parent process continues executing the program from the point that
fork was called

.The child process, too, executes the same program from the same place

All the statements after the call to fork will be executed twice, once, by
the parent process and once by the child process.

.The child obtains copies of the parent’'s stack, data, heap, and text
segments.

' ®®© ZME%TXE

Process
Creation - fork()

.The execution context for the child process is a copy of parent's context

at the time of the call

int child pid;
int child_status;

int main()

{

int ret;

ret = fork();
switch (ret)

{

case -1:
case O:

default:

'@@@

Stack

!
1

Heap

perror (“fork”) ;
exit (1),

Data

<code for child pr«

Code

exit (0) ;

<code for parent process>

wait (&child status);

ret=0

' ret = xx

Vv

Stack

Heap

Data

Code

)

2MERTXE

Process
fork() - The Flow
PID = 25
Data
Text
Stack

Process Status

~ Linux
Kernel

' ®®© N ZME%TXE

Process
fork() - The Flow

Data < ——— """ >
Text =

Stack < TT———o S M

Process Status

ret = fork();
switch (ret)
{
case -1:
perror (“fork”) ;
exit(1l);
case 0:
<code for child>
exit(0) ;
default:
<code for parent> \
wait(&child status)/ Linux

} ‘ |
‘;Kernel

' ®®© o ZME%TXE

Process
fork() - The Flow

Data < ——— """ >
Text =

Stack < TT———o S M

Process Status

(zet = fork();
switch (ret)

{

case -1:
perror (“fork”)\;
exit(1l);

case 0:
<code for child>
exit(0) ;

default:
<code for parent> / N
wait(&child status)/ Linux

} ‘ |
‘;Kernel

' ®®© o ZME%TXE

Process
fork() - The Flow

PID = 25

Text

Process Status

ret = fork () ; ret = 26
—> switch (ret)
{
case -1:
perror (“fork”) ;
exit(1l);
case 0:

<code for child>
exit (0) ;
default:
<code for parent>
wait (&child status)
}

'@@@

Process Status

- Linux
Kernel

)

2MERTXE

Process
fork() - The Flow

PID = 25 PID = 26
Data <77~ S DEe— > Data
Text — Text
Stack <~ ~———> M< —————— S > Stack
Process Status Process Status
ret = fork(); ret = 26 ret = fork();
—> switch (ret) switch (ret) <
{ {
case -1: case -1:
perror (“fork”) ; perror (“fork”) ;
exit(1l); exit(1l);
case 0: case 0:
<code for child> <code for child>
exit (0) ; exit (0) ;
default: default:
<code for parent> <code for parent>
wait (&child status) Linux wait (&child status
} | | }
Kernel

' ®®© | ZME%TXE

Process
fork() - The Flow

PID = 25

Text -

Process Status

ret = fork () ; ret 26
—> switch (ret)

{

case -1:
perror (“fork”) ;
exit(1l);

case 0:
<code for child>
exit (0) ;

default:
<code for parent>

wait(&child_status) |io

®P©

Process Status

Kernel

ret = fork(); ret = 0
switch (ret) <—
{
case -1:
perror (“fork”) ;
exit(1l);
case 0:
<code for child>
exit (0) ;
default:

<code for parent>
wait (&child status

)

2MERTXE

Process
fork() - The Flow

PID = 25

Text

Process Status

ret = fork(); ret = 26
switch (ret)
{
case -1:
perror (“fork”) ;
exit(1l);
case 0:

<code for child>
exit (0) ;

default:
<code for parent>

—_—> wait (&child status)

}

'@@@

\Linux
ernel

Process Status

ret = fork(); ret = 0
switch (ret)
{
case -1:
perror (“fork”) ;
exit(1l);
case 0:

<code for child>

exit (0) ;

default:
<code for parent>
wait (&child status

)

2MERTXE

Process

PID = 25

Text

fork() - The Flow

Process Status

ret = fork();
switch (ret)

{

case -1:

case O:

default:

ret

26 ret =

fork () ;

switch (ret)

{

perror (“fork”) ;
exit (1),

<code for child>

case -1:

case O:

Process Status

ret = 0

perror (“fork”) ;
exit (1),

<code for child>

exit (0) ;

exit (0) ; <

<code for parent>

—

}

'@@@

wait (&child &%atus{ Linux \

Kernel

default:

<code for parent>
wait (&child status

)

2MERTXE

Process
fork() - The Flow

PID = 25

Text -

Process Status

ret = fork(); ret
switch (ret)

{

26

case -1:
perror (“fork”) ;
exit(1l);
case 0:
<code for child>
exit(0) ;
default:
<code for parent> \
wait(&child status)/ Linux

%}

Kernel

® B ZME%TXE

Process
fork() - How to Distinguish?

Wy

.First, the child process is a new process and therefore has a new
process ID, distinct from its parent’s process ID

.One way for a program to distinguish whether it's in the parent process
or the child process is to call getpid

.The fork function provides different return values to the parent and child
processes

.One process “goes in” to the fork call, and two processes “come out,”
with different return values

.The return value in the parent process is the process ID of the child

.The return value in the child process is zero

' ®®© ZME%TXE

Process
fork() - Example

Wy

-What would be output of the following program?

int main()

{
fork () ;

fork () ;
fork () ;
printf (“Hello World\n”) ;

return O;

' ®®© ZME%TXE

Process
fork() - Example

i‘ P
—> int main|()
{
fork () ;
fork () ;
fork () ;
printf (“Hello World\n”) ;
return O;
}

' ®®© ZME%TXE

Process
fork() - Example

—> fork() ;

int main()

{

fork () ;
fork () ;

printf (“Hello World\n”) ;

return O;

'@@@

C1

)

2MERTXE

Team Emertxe

Team Emertxe

Process
Zombie

Wy

.Zombie process is a process that has terminated but has not been
cleaned up yet

It is the responsibility of the parent process to clean up its zombie
children

If the parent does not clean up its children, they stay around in the
system, as zombie

When a program exits, its children are inherited by a special process,
the init program, which always runs with process ID of 1 (it's the first
process started when Linux boots)

.The Init process automatically cleans up any zombie child processes
that it inherits.

' ® © ZME%TXE

Process
Orphan

Wy

.An orphan process is a computer process whose parent process has
finished or terminated, though it remains running itself.

.Orphaned children are immediately "adopted" by init .

. An orphan is just a process. It will use whatever resources it uses. It is
reasonable to say that it is not an "orphan" at all since it has a parent but
"adopted".

Init automatically reaps its children (adopted or otherwise).

S0 if you exit without cleaning up your children, then they will not
become zombies.

)

2MERTXE

Process
Overlay - exec()

.The exec functions replace the program running in a process with
another program

When a program calls an exec function, that process immediately

ceases executing and begins executing a new program from the
beginning

.Because exec replaces the calling program with another one, it never
returns unless an error occurs

.This new process has the same PID as the original process, not only the
PID but also the parent process ID, current directory, and file descriptor
tables (if any are open) also remain the same

-Unlike fork, exec results in still having a single process

' ®®© ZME%TXE

Process
Overlay - exec()

.Let us consider an example of execlp (variant of exec() function)
shown below

PID
Program
Counter
/* Program: my ls.c */ Registers
—> int main|()

{ Stack
print (“Executing my 1ls :)\n”);
execlp(“/bin/1ls”, “1s”, NULL) ; Heap

}

Data
Code

' ®®© ZME%TXE

Process

Overlay - exec()

After executing the exec function, you will note the following

changes

/* Program: my ls.c */

int main()

{

print (“Executing my 1ls :)\n”);

execlp (V/bin/1s”, “1ls”, NULL);

'@@@

PID

Program
Counter

Registers

Stack
Heap

Data

Code

Ly |

|

Preserved

Reset

Overwritten by New Code
Overwritten by New Code

Overwritten by New Code

Overwritten with New Code

)

2MERTXE

Process
exec() - Variants

.The exec has a family of system calls with variations among them

.They are differentiated by small changes in their names

.The exec family looks as follows:

System call

Meaning

execl(const char *path, const char *arg, ...);

Full path of executable, variable number of
arguments

execlp(const char *file, const char *arg, ...);

Relative path of executable, variable number
of arguments

execv(const char *path, char *const argv[]);

Full path of executable, arguments as pointer
of strings

execvp(const char *file, char *const argv(]);

Relative path of executable, arguments as
pointer of strings

'@@@

)

2MERTXE

Process
Blending fork() and exec()

Wy

If we want a calling program to continue execution after exec, then we
should first fork() a program and then exec the subprogram in the child
process

.Practically calling program never returns after exec()

.This allows the calling program to continue execution as a parent, while
child program uses exec() and proceeds to completion

.This way both fork() and exec() can be used together

’ ®®© ZME%TXE

Process
COW — Copy on Write

Wy

.Copy-on-write (called COW) is an optimization strategy

-When multiple separate process use same copy of the same information
It IS not necessary to re-create it

.Instead they can all be given pointers to the same resource, thereby
effectively using the resources

.However, when a local copy has been modified (i.e. write) , the COW
has to replicate the copy, has no other option

.For example if exec() is called immediately after fork() they never need
to be copied the parent memory can be shared with the child, only when
a write is performed it can be re-created

' ®®© ZME%TXE

Process
Termination

-When a parent forks a child, the two process can take any turn to finish
themselves and in some cases the parent may die before the child

.In some situations, though, it is desirable for the parent process to wait
until one or more child processes have completed

.This can be done with the wait() family of system calls.

.These functions allow you to wait for a process to finish executing,
enable parent process to retrieve information about its child’s termination

’ ®®© ZME%TXE

Process
Termination

.Process can be terminated in any one of the following ways,
-Normal program termination, i.e end of the main function.

—By an explicit return statement in the main function.

-By the exit function or _exit system call anywhere in the program.

-On receipt of a signal which may terminate the process.

' ®®© ZME%TXE

Process
Child’s exit status

-What does the parent do when the child is executing?

~Wait to gather the child’s exit status
.Example:

—-Normal shell behavior when any command is run in the command prompt.

—Continue execution without waiting for the child and pick up the exit status of
the child later.

.Example:

-Shell exhibiting non-waiting, when any command is run in the background.

' ®®© ZME%TXE

I Synchronous & Asynchronous

Wy

Synchronous Asynchronous

Wait for child to finish

Interrupts

wait

),

2MERTXE

Process
Walit

fork() in combination with wait() can be used for child monitoring

Appropriate clean-up (if any) can be done by the parent for ensuring better
resource utilization

.Otherwise it will result in a ZOMBIE process

.There are four different system calls in the wait family

System call Meaning

wait(int *status) Blocks & waits the calling process until
one of its child processes exits. Return
status via simple integer argument

waitpid (pid_t pid, int* status, int options) Similar to wait, but only blocks on a child
with specific PID

wait3(int *status, int options, struct rusage Returns resource usage information

*rusage) about the exiting child process.

wait4 (pid_t pid, int *status, int options, struct Similar to wait3, but on a specific child

rusage *rusage)

’ ®®© ZME%TXE

Process
Resource Structure

Wy

struct rusage {

struct timeval ru_utime;
/* user CPU time used */

struct timeval ru_stime; /* system CPU time
used */

long ru_maxrss; /* maximum resident set size
*/

long ru_ixrss; /* integral shared memory
size */

long ru_idrss; /* integral unshared data size
*/

' @@ ru_isrss; /* integral unshared St%?\l/I(E%TXE
o>/

Team Emertxe

Thank You

