R-PI

Team Emertxe

loT Protocols

CoAP

CoAP

Introduction

* Is one of the latest application layer protocol developed by IETF for smart devices to

connect to Internet

* Many devices exist as components in vehicles and buildings with constrained resources,

it leads a lot of variation in power computing, communication bandwidth etc

* lightweight protocol CoAP is intended to be used and considered as a replacement of HTTP
for being an IoT application layer protocol

Table 1 protocols in different layers

Application layer HTTP, CoAP, EBHTTP, LTF, SNMP, [Pfix, DN5, NTP,
S5H, DLMS, COSEM, DNPF, MODEUS

Network/Communication IPv6,/1Pv4, RPL, TCP/UDP, ulP, SLIP, 6LoWPAN,
layer

IEEE 802.11 Series, 802.15 Series, 802.3, 802.16,
PHY /MAC layer WirelessHART, Z-WAVE, UWEB, IrDA, PLC,
LonWorks, KNX

IETF: Internet Engineering Task Force
2MERTXE

CoAP

Features

Constrained web protocol fulfilling M2M requirements

Security binding to DTLS (Datagram Transport Layer Security)

Asynchronous message exchanges

Low header overhead and parsing complexity

URI and content type support

Simple proxy and caching capabilities

UDP binding with optional reliability supporting unicast and multicast requests

2MERTXE

CoAP

Structure Model

Application

Request/Response

Messages

CoAP interactive model is similar to HTTP's client/server model

* The Dbottom layer 1is Message layer that has been designed to deal with UDP and

asynchronous switching

The request/response layer concerns communication method and deal with request/response

message

2MERTXE

COAP: Structure Model
Message Layer Model

®* Message Layer supports 4 types of messages

CON

NON

* ACK

* RST

(confirmable)
(non—-confirmable)
(Acknowledgement)

(Reset)

2MERTXE

COAP: Structure Model
Message Layer Model

* Reliable message transport

®* Keep retransmission until get ACK with the same message ID (like 0x8cb56 in fig.)
¢ If recipient fail to process message, 1t responses by replacing ACK with RST.

* Fig shows a reliable message transport

CON [0xBc56]

ACK [0x8c56]

2MERTXE

COAP: Structure Model
Message Layer Model

UnReliable message transport

A message that does not require reliable transmission can be sent as a Non-
confirmable Message (NON).

Transporting with NON type message.

It doesn't need to be ACKed, but has to contain message ID for supervising in case
of retransmission.

Messages is not acknowledged, but has a message ID for duplicatedetection

If recipient fail to process message, server replies RST.

Fig shows a reliable message transport

Cli

NON [0xBc57]

2MERTXE

COAP: Structure Model
Message Layer Model

* UnReliable message transport

* Unlike HTTP, CoAP deals with these interchanges asynchronously over adatagram-
oriented transport, such as User Datagram Protocol (UDP), and thus, a NON might get
lost without the client and the server noticing it.

2MERTXE

CoOAP: Structure Model
Request/Response Layer Model

* Piggy-backed

®* Client sends request using CON type or NON type message and receives response ACK
with confirmable message immediately
* fig. shows successful response, ACK contain response message (identify by using

token), for failure response, ACK contain failure response code

ent @

CON [0x4d45] CON [0X4D486)
Get/temperature Get/ temperature
(Token 0x21) R [Token 0x22)
ACK [0x4d45] ACK [0x4d45)
2.05 Content 4,04 Not Found
(Token 0x21) [Token 0x22)
“20:1C" “Not Found”
e Fg

The successful and failure response results of GET method

2MERTXE

CoOAP: Structure Model
Request/Response Layer Model

Separate response

If server receive a CON type message but not able to response this request
immediately, it will send an empty ACK in case of client resend this message

When server ready to response this request, it will send a new CON to client and
client reply a confirmable message with acknowledgment

ACK is just to confirm CON message, no matter CON message carry request or response

CON [0x4d45]
Get/temperature
(Token 0x21)

ACK [0x4d45]

CON [Dx4d45]
2.05 Content
(Token 0x21)
" 20.1C"
ACK [0x4d45]

2MERTXE

CoOAP: Structure Model
Request/Response Layer Model

* Non confirmable request and response

* unlike Piggy-backed response carry confirmable message, in Non confirmable request
client send NON type message indicate that Server don't need to confirm

* Server will resend a NON type message with response

NON [Ox4d45]
Get/temperature
[Token 0x21)

NON [0x4d45]

2.05 Content

[Token 0x21)
"Zoac

2MERTXE

CoOAP: Structure Model
Message Format

CoAP is based on the exchange of compact messages that, by default, are transmitted over

UDP (i.e. each CoAP message occupies the data section of one UDP datagram)
Message of CoAP uses simple binary format

Message= fixed-size 4-byte header plus a variable-length Token plus a sequence of CoAP

options plus payload

0 i 2 3
gi1234hH 678952012345 678 20123456 T89540l
s L o h e T B s o s 1y e T o ot P e e Lo e 7
IVer| T | TEL | Code | Message ID |
t—t—t—t—t—Ft—F—F—F—t—F—F—F—F—F—t—F—F—F—t—t—F—F—F—F—F—F—F—+—Ft—F—+—+

I Token {(if any, TEL bytes) ...
t—t—F—t—F—F—F—F—F—F—F—F—F—F—F—t—F—F—F—+—F—F—F—t—F—F—F—F—+—F—F-+—+
| Options (if any) ...
t—t—d—t—t—t—t—t—t—t—t—t—t—t—t—t—F—t—t—t—t—t—t—F—t—t—t—t—t—t—t—+—+
| Lokl & oF iy Payload (if any) ...

B it b et S T e e e b s T R e A it k. s ot T SR o S S A S

Figure 7: Message Format

2MERTXE

CoAP: Structure Model
Message Format

0 I 2 3
P13 E56TH30G1234567TH0.20]1 2345678930171
s T s Tt T S L s A B e et
IVex| T | TEL | Code | Message ID

Fot—t—t—t—t ottt —t—F =ttt —F—t—F -ttt —t—F—F—F——+—+—+
] Token (if any, TKL bytes)

s T s At e o e s e e S e E e e
| Options (if any)
+—+—+—+—+—-+—+—+—+—+—F—+—F—+—F—+—F+—F+—+—F+ -+t —+—+—+
|E dellddnds & s il Payload (if any)

i i e e e e e e e e e e e e e e e

Figure 7: Message Format

Ver It is a 2 bit unsigned integer indicating the version

T 2 bit unsigned integer indicating the message type: 0 confirmable, 1 non-confirmable
OoC / TKL Token Length is the token 4 bit length

Code It is the code response (8 bit length)

MessagelID It is the message ID expressed with 16 bit

2MERTXE

COAP: Security + Application
Why use DTLS for CoAP Security

CoAP is now becoming the standard protocol for IoT applications
Security is important to protect the communication between devices
A security protocol DTLS is introduced

There are three main elements when considering security,

authentication and confidentiality, DTLS can achieve all of them
DTLS employ TCP, which is too complex
DTLS solves two problems
* reordering and packet lost
It adds three implements
* packet retransmission
* assigning sequence number within the handshake

* replay detection

namely

integrity,

2MERTXE

COAP: Security + Application
Why use DTLS for CoAP Security

* DTLS in application layer protect end-to-end communication

* No end-to-end communication protection will make it easy for attacker to access to all

text data that passes through a compromised node

* DTLS also avoids cryptographic overhead problems that occur in lower layer security

protocols

Application (CoAP, XML)

Security (DTLS)

Transport (UDP)

Network (IPv6)

2MERTXE

COAP: Security + Application
Application for Smart Homes

Control
B Collection

Brower Collection

2MERTXE

THANK YOU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

