
R-Pi

Team Emertxe



IoT API’s
ReST



REST
Introduction

 Acronynm: REpresentational State Transfer
 ???

 Resources/Nouns

 Actions

 Representation

 State

 Transfer



REST
Introduction

 Acronynm: REpresentational State Transfer



REST
Introduction

 Acronynm: REpresentational State Transfer

REST is not a standard or protocol, this is an approach to or 

architectural style for writing API



REST
Introduction

 Acronynm: REpresentational State Transfer

REST is not a standard or protocol, this is an approach to or 

architectural style for writing API



REST
Need

 Separate Client / Server

 Independent of platforms / languages

 Provides flexibility 

 It is scalable

 Not constraint to one format

 Built on top of HTTP, can take advantage of HTTP cache

 Easy to use



REST
Understanding

 Is an architectural style

 Restful refers to web services that implement REST

 Simply a program that returns data from the database to the client in a format that 

it requests

 Based on HTTP, retrieves data from standard HTTP methods,

 Get

 Put

 Post

 Delete



REST
Constraints

 Client – Server

 Stateless

 Cache

 Uniform Interface

 Layered System

 Code on Demand



REST- Constraints
Client-Server

 REST application should have Client – Server architecture

 Client & Server is decoupled

 Both can evolve independently

 Clients need not worry about the logic / data access layer

 Servers need not know anything about the frontend UI



REST- Constraints
Stateless

 Stateless constraints states that the server does not store any session data

 All the information to understant the request is contained in the request itself

 Improves scalability



REST- Constraints
Cache

 Responses should be cachable, if possible

 It requires that every response should include whether a response can be cachable or 

not

 For subsequent requests, the client can retrieve from its cache, no need to send the 

request to the server

 Reduces network latency



REST- Constraints
Uniform Interface

 Key differentiator between REST and NON-REST API’s

 4 elements of UI constraints

 Identification of Resources

 Manipulation of Resources through Representations

 Self-Descriptive Messages

 Hypermedia as the Engine of Application State

 Promotes generality as all components interacts in the same way



REST- Constraints
Uniform Interface: Identification of Resources

 Identification of Resources

● Each distinct Web-based concept is known as a resource and may be addressed by 

a unique identifier, such as a URI. 

● For example, a particular home page URI, like http://www.emertxe.com, uniquely 

identifies the concept of a specific website’s root resource.



REST- Constraints
Uniform Interface: Manipulation

● Manipulation of Resources through Representations

➢ Clients manipulate representations of resources.

➢ The same exact resource can be represented to different clients in different ways.

➢ For example, a document might be represented as HTML to a web browser, and as JSON 

to an automated program. 

➢ The key idea here is that the representation is a way to interact with the resource 

but it is not the resource itself.

➢ This conceptual distinction allows the resource to be represented in different ways 

and formats without ever changing its identifier.



REST- Constraints
Uniform Interface: Self-descriptive messages

● Self-descriptive messages

➢ A resource’s desired state can be represented within a client’s request message.

➢ A resource’s current state may be represented within the response message that 

comes back from a server.

➢ As an example, a wiki page editor client may use a request message to transfer a 

representation that suggests a page update (new state) for a server-managed web 

page (resource).

➢ The self-descriptive messages may include metadata to convey additional details 

regarding the resource state, the representation format and size, and the message 

itself.

➢ An HTTP message provides headers to organize the various types of metadata into 

uniform fields.



REST- Constraints
Uniform Interface: Hypermedia 

● Hypermedia as the engine of application state (HATEOAS)

➢ A resource’s state representation includes links to related resources. 

➢ Links are the threads that weave the Web together by allowing users to traverse 

information and applications in a meaningful and directed manner. 

➢ The presence, or absence, of a link on a page is an important part of the 

resource’s current state.



REST- Constraints(Optional)
Code On Demand

 In addition to the data, the servers can provide executable code to the client

● A constraint which enables web servers to temporarily transfer executable programs, 

such as scripts or plug-ins, to clients.

● The client must be able to understand and execute the code that it downloads on-

demand from the server.

● For this reason, code-on-demand is the only constraint of the Web’s architectural 

style that is considered optional.

● Web browserhosted technologies like Java applets, JavaScript, and Flash exemplify the 

code-ondemand constraint.



THANK YOU


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

