
Team Emertxe

Linux Internals & Networking
System programming using Kernel interfaces

Contents

Linux Internals & Networking
Contents

●Introduction

●Transition to OS programmer

●System Calls

●Process

●IPC

●Signals

●Networking

●Threads

●Synchronization

●Process Management

●Memory Management

Signals

Signals
Introduction

●Signals are software interrupts that provide a mechanism for handling

asynchronous events.

●Events can originate from

–outside the system

●such as when the user generates the interrupt character (usually via Ctrl-C)

–from activities within the program or kernel

●such as when the process executes code that divides by zero

Signals
Life Cycle

●Signals are raised(sent / generated)

●The kernel then stores the signal until it is able to deliver it.

●once it is free to do so, the kernel handles the signal as appropriate.

●The kernel can perform one of three actions upon receiving the signal,

–Ignore the signal

–Catch and handle the signal

–Perform the default action

Signals
Signal Identifiers

●Every signal has a symbolic name that starts with the prefix SIG.

●For example,

–SIGINT - The signal sent when the user presses Ctrl-C

–SIGABRT - The signal sent when the process calls the abort() function

–SIGKILL - The signal sent when a process is forcefully terminated.

●Signals are all defined in a header file included from <signal.h>

kill -l : This command will list the signals

Get Basics Right
Function pointers

●What is function pointer?

●Datatype *ptr ; normal pointer

●Datatype (*ptr)(datatype,..); Function pointer

●How it differs from normal data pointer?

●Holds address of an object

●Pointing to a address from

stack/heap/data

●Dereference to get value from address

●Pointer arithmetic is valid

●Holds address of function

●Pointing to a address from code

segment.

●Dereference to execute the function

● Pointer arithmetic not valid

Function Pointer Data Pointer

Get Basics Right
Call back functions

Registering an event for later use

Get Basics Right
Call back functions

●In computer programming, a callback is a reference to executable code, or a

piece of executable code, that is passed as an argument to other code.

●This allows a lower-level software layer to call a subroutine (or function) defined

in a higher-level layer.

Team Emertxe

Signals
Origins

●The kernel

●A Process may also send a Signal to another Process

●A Process may also send a Signal to itself

●User can generate signals from command prompt:

●‘kill’ command:

●$ kill <signal_number> <target_pid>

●$ kill –KILL 4481

●Sends kill signal to PID 4481

●$ kill –USR1 4481

●Sends user signal to PID 4481

Signals
Handling

●When a process receives a signal, it processes by handling immediately.

●For all possible signals, the system defines a default disposition or action to

take when a signal occurs

●There are four possible default dispositions:

–Exit: Forces process to exit

–Core: Forces process to exit and create a core file

–Stop: Stops the process

–Ignore: Ignores the signal

●Handling can be done, called ‘signal handling’

Signals
Handling

●The signal() function can be called by the user for capturing signals and
handling them accordingly

●First the program should register for interested signal(s)

●Upon catching signals corresponding handling can be done

Function Meaning

signal (int signal_number, void *(fptr) (int)) signal_number : Interested signal

fptr: Function to call when signal handles

Signals
Handling

User
Space

Signal handler
executed

Kernel
Space

Pointer Process

State

Process ID

Signals

Registers

Memory Limits

List of Open Files

P1

Signal generated

Signal
handler

Registering handler
signal / sigaction

Signals
Handler

●A signal handler should perform the minimum work necessary to respond to the
signal

●The control will return to the main program (or terminate the program)

●In most cases, this consists simply of recording the fact that a signal occurred or
some minimal handling

●The main program then checks periodically whether a signal has occurred and
reacts accordingly

●Its called as asynchronous handling

Team Emertxe

Signals
Advanced Handling

●The signal() function can be called by the user for capturing signals and
handling them accordingly

●It mainly handles user generated signals (ex: SIGUSR1), will not alter default
behavior of other signals (ex: SIGINT)

●In order to alter/change actions, sigaction() function to be used

●Any signal except SIGKILL and SIGSTOP can be handled using this

Function Meaning

sigaction(

int signum,

const struct sigaction *act,

struct sigaction *oldact)

signum : Signal number that needs to be handled

act: Action on signal

oldact: Older action on signal

Team Emertxe

Signals
vs system calls

User
Space

Sending Signal

System call
S/w interrupt from
U/S to K/S

Signals
S/w interrupt from

K/S to U/S

P1P2

Kernel
Space

Synchronous & Asynchronous

●Wait for child to finish

Synchronous Asynchronous

Polling Interrupts

sleep wait

sleep Pause

Signals
Self Signaling

●A process can send or detect signals to itself

●This is another method of sending signals

●There are three functions available for this purpose

●This is another method, apart from ‘kill’

Function Meaning

raise (int sig) Raise a signal to currently executing process. Takes signal number

as input

alarm (int sec) Sends an alarm signal (SIGALRM) to currently executing process

after specified number of seconds

pause() Suspends the current process until expected signal is received. This

is much better way to handle signals than sleep, which is a crude

approach

Inter Process Communications
Summary

●We have covered

Communication Synchronization

●Pipes
●FIFO
●Shared memory
●Signals
●Sockets

●Semaphores

Data exchange Resource usage/access/control

Team Emertxe

Thank You

