
Introduction
Python

Python

● Combines the features of C and JAVA

● It offers elegant style of developing programs like C

● It offers classes and objects like Java

Features of Python

● Simple

● More clarity

● Less stress on reading and understanding the syntax

● Easy to learn

● Uses very few keywords

● Very simple structure, resembles C

● Open source

● High level language

● Dynamically typed

● Type of the variable is not declared statically

Features of Python...

● Platform Independent

○ Python compiler generates byte code

○ PVM interprets the byte code

● Portable

● Procedure and Object oriented language

● Interpreted

● Extensible

● Embeddable

● Huge Library

● Scripting Language

● Database Connectivity

○ Provides interfaces to DB like Oracle, Sybase or MySql

Execution of a Python Program

● Example:

● x.py → python_compiler → x.pyc → PVM → Machine_Code

● python -m py_compile x.py

● python x.cpython-34.py

● python -m dis add.py

Memory Management in Python

● In C or C++, allocation and deallocation of memory will be done manually

● malloc(), calloc(), realloc() or free()

● In python, it is done at run time automatically

● Memory Manager inside the PVM takes care of allocating memory for all objects in

Python.

● All objects are stored in Heap

Garbage Collection in Python

● Garbage collector is a module in Python that is useful to delete objects from memory

which are not used in the program.

● The module that represents the GC is gc.

● It will keep track of how many times the object is referenced.

● If it is referenced 0 times, then gc will remove object from memory.

C Vs Python

C Python

Procedure Oriented language Object Oriented language

Faster Slower

Compulsory to declare the data types of variables Data Types are not required

Type discipline is static and weak Dynamic and strong

Pointers concept present No pointers concept

No exception handling facility Exception handling facility is robust

Do-while is present Absent

Has switch statement No Switch

C Vs Python

C Python

Manually allocate the memory Automatic

Absence of GC GC is present

Supports Single and multi dimensional arrays Supports only single dimension

Array should be positive Can be Positive or negative

Array bounds checking is not present Present

Indentation is not necessary Strictly needed

Every statement is terminated by ; No semicolon

Chapter-2

Data Types

Comments

Data Types

Comments
Single Line Comments

● Starts with # symbol

● Comments are non-executable statements

1 #To find sum of two numbers
2 a = 10 #Store 10 into variable 'a'

Comments
Multi Line Comments

● Version-1

● Version-2

● Version-3

1 #To find sum of two numbers
2 #This is multi-line comments
3 #One more commented line

4 """
5 This is first line
6 This second line
7 Finally comes third
8 """

4 '''
5 This is first line
6 This second line
7 Finally comes third
8 '''

Docstrings
Multi Line Comments

● Python supports only single line commenting

● Strings enclosed within ''' … ''' or """ … """, if not assigned to any variable, they are removed from

memory by the GC

● Also called as Documentation Strings OR docstrings

● Useful to create API file

Command to Create the html file

py -m pydoc -w 1_Docstrings

-m: Module
-w: To create the html file

How python sees variables

Data-Types
None Type

● None data-type represents an object that does not contain any value

● In Java, it is called as NULL Object

● In Python, it is called as NONE Object

● In boolean expression, NONE data-type represents ‘False’

● Example:

○ a = “”

Data-Types
Numeric Type

● int

○ No limit for the size of an int datatype

○ Can store very large numbers conveniently

○ Only limited by the memory of the system

○ Example:

■ a = 20

Data-Types
Numeric Type

● float

○ Example-1:

■ A = 56.78

○ Example-2:

■ B = 22.55e3 ⇔ B = 22.55 x 10^3

Data-Types
Numeric Type

● Complex

○ Written in the form a + bj OR a + bJ

○ a and b may be ints or floats

○ Example:

■ c = 1 + 5j

■ c = -1 - 4.4j

Representation
Binary, Octal, Hexadecimal

● Binary

○ Prefixed with 0b OR 0B

■ 0b11001100

■ 0B10101100

● Octal

○ Prefixed with 0o OR 0O

■ 0o134

■ 0O345

● Hexadecimal

○ Prefixed with 0x OR 0X

■ 0xAB

■ 0Xab

Conversion
Explicit

● Coercion / type conversions

○ Example-1:

○ Example-2:

x = 15.56
int(x) #Will convert into int and display 15

x = 15
float(x) #Will convert into float and display 15.0

Conversion
Explicit

● Coercion / type conversions

○ Example-3:

○ Example-4:

a = 15.56
complex(a) #Will convert into complex and display (15.56 + 0j)

a = 15
b = 3
complex(a, b) #Will convert into complex and display (15 + 3j)

Conversion
Explicit

● Coercion / type conversions

○ Example-5: To convert string into integer

○ Syntax: int(string, base)

○ Other functions are

■ bin(): To convert int to binary

■ oct(): To convert oct to binary

■ hex(): To convert hex to binary

str = “1c2”
n = int(str, 16)
print(n)

bool Data-Type

● Two bool values

○ True: Internally represented as 1

○ False: Internally represented as 0

● Blank string “” also represented as False

● Example-1:

a = 10
b = 20
if (a < b):

print(“Hello”)

bool Data-Type

● Example-2:

● Example-3:

a = 10 > 5
print(a) #Prints True

a = 5 > 10
print(a) #Prints False

print(True + True) #Prints 2

print(True + False) #Prints 1

Sequences

Data Types

Sequences
str

● str represents the string data-type

● Example-1:

● Example-2:

3 str = "Welcome to Python"
4 print(str)
5
6 str = 'Welcome to Python'
7 print(str)

 3 str = """
 4 Welcome to Python
 5 I am very big
 6 """
 7 print(str)
 8
 9 str = '''
 10 Welcome to Python
 11 I am very big
 12 '''
 13 print(str)

Sequences
str

● Example-3:

● Example-4:

 3 str = "This is 'core' Python"
 4 print(str)
 5
 6 str = 'This is "core" Python'
 7 print(str)

 3 s = "Welcome to Python"
 4
 5 #Print the whole string
 6 print(s)
 7
 8 #Print the character indexed @ 2
 9 print(s[2])
 10
 11 #Print range of characters
 12 print(s[2:5]) #Prints 2nd to 4th character
 13
 14 #Print from given index to end
 15 print(s[5:])
 16
 17 #Prints first character from end(Negative indexing)
 18 print(s[-1])

Sequences
str

● Example-5:

 3 s = "Emertxe"
 4
 5 print(s * 3)

bytes Data-types

Data Types

Sequences
bytes

● bytes represents a group of byte numbers

● A byte is any positive number between 0 and 255(Inclusive)

● Example-1:

 3 #Create the list of byte type array
 4 items = [10, 20, 30, 40, 50]
 5
 6 #Convert the list into bytes type array
 7 x = bytes(items)
 8
 9 #Print the array
 10 for i in x:
 11 print(i)

Sequences
bytes

● Modifying any item in the byte type is not possible

● Example-2:

 3 #Create the list of byte type array
 4 items = [10, 20, 30, 40, 50]
 5
 6 #Convert the list into bytes type array
 7 x = bytes(items)
 8
 9 #Modifying x[0]
 10 x[0] = 11 #Gives an error

bytearray Data-type

Data Types

Sequences
bytearray

● bytearray is similar to bytes

● Difference is items in bytearray is modifiable

● Example-1:

 3 #Create the list of byte type array
 4 items = [10, 20, 30, 40, 50]
 5
 6 #Convert the list into bytes type array
 7 x = bytearray(items)
 8
 9 x[0] = 55 #Allowed
 10
 11 #Print the array
 12 for i in x:
 13 print(i)

list Data-type

Data Types

Sequences
list

● list is similar to array, but contains items of different data-types

● list can grow dynamically at run-time, but arrays cannot

● Example-1:

 3 #Create the list
 4 list = [10, -20, 15.5, 'Emertxe', "Python"]
 5
 6 print(list)
 7
 8 print(list[0])
 9
 10 print(list[1:3])
 11
 12 print(list[-2])
 13
 14 print(list * 2)

tuple Data-type

Data Types

Sequences
tuple

● tuple is similar to list, but items cannot be modified

● tuple is read-only list

● tuple are enclosed within ()

● Example-1:

 3 #Create the tuple
 4 tpl = (10, -20, 12.34, "Good", 'Elegant')
 5
 6 #print the list
 7 for i in tpl:
 8 print(i)

range Data-type

Data Types

Sequences
range

● range represents sequence of numbers

● Numbers in range are not modifiable

● Example-1:

 3 #Create the range of numbers
 4 r = range(10)
 5
 6 #Print the range
 7 for i in r:
 8 print(i)

Sequences
range

● Example-2:

● Example-3:

 10 #Print the range with step size 2
 11 r = range(20, 30, 2)
 12
 13 #Print the range
 14 for i in r:
 15 print(i)

 17 #Create the list with range of numbers
 18 lst = list(range(10))
 19 print(lst)

Sets

Data Types

Sets

● Set is an unordered collection of elements

● Elements may not appear in the same order as they are entered into the set

● Set does not accept duplicate items

● Types

○ set datatype

○ frozenset datatype

Sets
set

● Example-1:

● Example-2:

● Example-3:

 3 #Create the set
 4 s = {10, 20, 30, 40, 50}
 5 print(s) #Order will not be maintained

 8 ch = set("Hello")
 9 print(ch) #Duplicates are removed

 11 #Convert list into set
 12 lst = [1, 2, 3, 3, 4]
 13 s = set(lst)
 14 print(s)

Sets
set

● Example-5:

● Example-6:

 11 #Convert list into set
 12 lst = [1, 2, 3, 3, 4]
 13 s = set(lst)
 14 print(s)

 16 #Addition of items into the array
 17 s.update([50, 60])
 18 print(s)
 19
 20 #Remove the item 50
 21 s.remove(50)
 22 print(s)

Sets
frozenset

● Similar to that of set, but cannot modify any item

● Example-1:

● Example-2:

 2 s = {1, 2, 3, 4}
 3 print(s)
 4
 5 #Creating the frozen set
 6 fs = frozenset(s)
 7 print(fs)

 9 #One more methos to create the frozen set
 10 fs = frozenset("abcdef")
 11 print(fs)

Mapping Types

Data Types

Mapping

● Map represents group of items in the form of key: value pair

● dict data-type is an example for map

● Example-1:

● Example-2:

 3 #Create the dictionary
 4 d = {10: 'Amar', 11: 'Anthony', 12: 'Akbar'}
 5 print(d)
 6
 7 #Print using the key
 8 print(d[11])

 10 #Print all the keys
 11 print(d.keys())
 12
 13 #Print all the values
 14 print(d.values())

Mapping

● Example-3:

● Example-4:

 16 #Change the value
 17 d[10] = 'Akul'
 18 print(d)
 19
 20 #Delete the item
 21 del d[10]
 22 print(d)

 24 #create the dictionary and populate dynamically
 25 d = {}
 26 d[10] = "Ram"
 27
 28 print(d)

Determining the Datatype

Data Types

Determining Datatype of a Variable

● type()

● Example-1:

 3 a = 10
 4 print(type(a))
 5
 6 b = 12.34
 7 print(type(b))
 8
 9 l = [1, 2, 3]
 10 print(type(l))

Operators

Team Emertxe

Arithmetic

OPERATORS
Arithmetic

Operator Example Result

+ a + b 18

- a - b 8

* a * b 65

/ a / b 2.6

% a % b 3

** a ** b 371293

// a // b 2

The results are obtained for the values of:
a = 13
b = 5

OPERATORS
Assignment

Operators

=

+=

-+

*+

/=

%=

**=

//=

Example-1:

Example-2:

Example-3:

a = b = 1

a = 1; b = 1

a, b = 1, 2

Python does not have ++ AND -- operators

OPERATORS
Unary Minus

Example-1:

n = 10
print(-n)

Example-2:

num = -10
num = -num
print(num)

OPERATORS
Relational

Operator Example Result

> a > b False

>= a >= b False

< a < b True

<= a <= b True

== a == b False

!= a != b True

The results are obtained for the values of:
a = 1
b = 2

OPERATORS
Relational: Chaining

Example-1:

x = 15
print(10< x < 20)

Example-2:

print(1 < 2 < 3 < 4)

OPERATORS
Logical

Operator Example Result

and a and b 2

or a or b 1

not not a False

Short Circuit evaluation implies to Logical Operators

If a = 100, b = 200

Example-1:

if (a < b and b < c):
print("Yes")

else:
print("No")

Example-2:
if (a > b or b < c):

print("Yes")
else:

print("No")

OPERATORS
Boolean

Operator Example Result

and a and b False

or a or b True

not not a False

If a = True, b = False

Example-1:

print(a and b)
print(a or b)
print(not a)

OPERATORS
Bitwise

Operator Example Result

~ ~a 1111 0101(-11)

& a & b 0000 1010(10)

| a | b 0000 1011(11)

^ a ^ b 0000 0001(1)

<< a << 2 0010 1000(40)

>> a >> 2 0000 0010(2)

If a = 10(0000 1010), b = 11(0000 1011)

In case of >> shifting, it preserves the sign of the number.

OPERATORS
Membership

Operator Description

in Returns True, if an item is found in the specified sequence

not in Returns True, if an item is not found in the specified sequence

Example-1:
names = ["Ram", "Hari", "Thomas"]

for i in names:
 print(i)

Example-2:
postal = {"Delhi": 110001, "Chennai": 600001, "Bangalore": 560001}

for city in postal:
 print(city, postal[city])

OPERATORS
Identity

Operator Description

is Returns True, if ID of two objects are same

is not Returns True, if ID of two objects are not same

 Use to comapre the memory locations of two objects

 id(): Is used to get the memory location ID

Example-1:

a = 25
b = 25
if (a is b): #This compares only the locations
 print("a and b are same")

OPERATORS
Identity

 To compare two objects, use ‘==’ operator

Example-1:

a = [1, 2, 3, 4]
b = [1, 2, 3, 4]

if (a == b):
 print("Objects are same")
else:
 print("Objects are not same")

OPERATORS
Precedence & Associativity

Operator Name

(expressions...), [expressions...], {key:
value...}, {expressions...}

Binding or tuple display, list display, dictionary
display, set display

x[index], x[index:index], x(arguments...),
x.attribute

Subscription, slicing, call, attribute reference

** Exponentiation

+, -, ~ Positive, negative, bitwise NOT

*, @, /, //, % Multiplication, matrix multiplication, division,
floor division, remainder

+, - Addition, Subraction

<<, >> Bitwise Left, Right shift

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

in, not in, is, is not, <, <=, >, >=, !=, == Comparisons, including membership tests and identity
tests

not Boolean not

and Boolean and

or Boolean or

if-else Conditional Expression

lambda Lambda Expression

All operators follow, Left – Right associativity, except ** which
follows Right - Left

Mathematical Functions

Example-1:
import math
x = math.sqrt(16)

Example-2:
import math as m
x = m.sqrt(16)

Example-3:
from math import sqrt
x = sqrt(16)

Example-4:

from math import sqrt, factorial
x = sqrt(16)
y = factorial(5)

THANK YOU

Standard Input & Output

Team Emertxe

Output Statements

Output Statements
Print()

 print(), when called simply throws the cursor to the next line

 Means, a blank line will be displayed

Output Statements
Print(“string”)

Example Output

print()

Prints the '\n' character

print("Hello") Hello

print('Hello') Hello

print("Hello \nWorld") Hello
World

print("Hello \tWorld") Hello World

print("Hello \\nWorld") Hello \nWorld

print(3 * 'Hello') HelloHelloHello

print("Hello"+"World") HelloWorld

print("Hello","World") Hello World

Output Statements
Print(variable list)

Example Output

a, b = 1, 2
print(a, b) 1 2

print(a, b, sep=",") 1,2

print(a, b, sep=':') 1:2

print(a, b, sep='---') 1---2

print("Hello", end="")
print("World")

HelloWorld

print("Hello", end="\t")
print("World")

Hello World

Output Statements
Print(object)

Example Output

lst = [10, 'A', "Hai"]
print(lst) [10, 'A', 'Hai']

d = {10: "Ram", 20: "Amar"}
print(d)

{10: 'Ram', 20: 'Amar'}

 Objects like list, tuples or dictionaries can be displayed

Output Statements
Print(“string”, variable list)

Example Output

a = 2
print(a, ": Even Number")

print("You typed", a, "as Input")

2 : Even Number
You typed 2 as Input

Output Statements
Print(formatted string)

Syntax: print("formatted string" % (varaible list))

Example Output

a = 10
print("The value of a: %i" % a) The value of a: 10

a, b = 10, 20
print("a: %d\tb: %d" % (a, b))

a: 10 b: 20

name = "Ram"
print("Hai %s" % name)
print("Hai (%20s)" % name)
print("Hai (%-20s)" % name)

Hai Ram
Hai (Ram)
Hai (Ram)

print("%c" % name[2]) m

print("%s" % name[0:2]) Ra

num = 123.345727
print("Num: %f" % num)
print("Num: %8.2f" % num)

Num: 123.345727
Num: 123.35

Output Statements
Print(formatted string)

Syntax: print("formatted string" % (varaible list))

Example Output
a, b, c = 1, 2, 3
print("First= {0}". format(a))
print("First= {0}, Second= {1}". format(a, b))
print("First= {one}, Second= {two}". format(one=a, two=b))
print("First= {}, Second= {}". format(a, b))

First= 1
First= 1, Second= 2
First= 1, Second= 2
First= 1, Second= 2

name, salary = "Ram", 123.45
print("Hello {0}, your salary: {1}". format(name, salary))
print("Hello {n}, your salary: {s}". format(n=name, s=salary))
print("Hello {:s}, your salary: {:.2f}". format(name, salary))
print("Hello %s, your salary: %.2f" % (name, salary))

Hello Ram, your salary: 123.45
Hello Ram, your salary: 123.45
Hello Ram, your salary: 123.45
Hello Ram, your salary: 123.45

Input Statements

Input Statements
Input()

Example

str = input()
print(str)

str = input("Enter the name: ")
print(str)

a = int(input("Enter the number: "))
print(a)

b = float(input("Enter the float number: "))
print(b)

Command Line Arguments

CLA
Example

 1 #To display CLA
 2
 3 import sys
 4
 5 #Get the no. of CLA
 6 n = len(sys.argv)
 7
 8 #Get the arguments
 9 args = sys.argv
 10
 11 #Print the 'n'
 12 print("No. Of CLA: ", n)
 13
 14 #print the arguments in one shot
 15 print(args)
 16
 17 #Print the arguments one by one
 18 for i in args:
 19 print(i)

CLA
Parsing CLA

● argparse module is useful to develop user-friendly programs

● This module automatically generates help and usage messages

● May also display appropriate error messages

CLA
Parsing CLA: Steps

● Step-1: Import argparse module

import argparse

● Step-2: Create an Object of ArgumentParser

parser = argparse.ArgumentParser(description="This program displays square of two numbers")

● Step-2a: If programmer does not want to display description, then above step can
be skipped

parser = argparse.ArgumentParser()

● Step-3: Add the arguments to the parser

parser.add_argument("num", type=int, help="Enter only int number.")

● Step-4: Retrieve the arguments

args = parser.parse_args()

● Step-4: Retrieve the arguments

● Step-5: Access the arguments

args.num

THANK YOU

Control Statements

Team Emertxe

Single Control Statements

If Statements
If-Else

 Syntax

if condition:

 statements

else:

 statements

 Example

if num % 2:

 print("ODD")

else:

 print("EVEN")

If Statements
If-Elif-Else

 Syntax

if condition1:

 statements

elif condition2:

 statements

else

 statements
 Example

if num == 1:

 print("You entered 1")

elif num == 2:

 print("You entered 2")

else:

 print("You entered 3")

Multiple Control Statements

Multiple Statements
While

 Syntax

while condition:

 statements

 Example

i = 1

while i <= 10:

 print(i)

 i = i + 1

Multiple Statements
For

 Syntax

for var in sequence:

 statements

 Example-v1.1

str = "Hello"

for ch in str:

 print(ch, end='')

 Example-v1.2

n = len(str)

for i in range(n):

 print(str[i])

Else Suite

Multiple Statements
For with Else suite

 Syntax

for var in sequence:

 statement / statements

else:

 statement / statements

 Example

for i in range(5):

 print(i)

else:

 print("Over")

Multiple Statements
While with Else suite

 Syntax

while condition:

 statement / statements

else:

 statement / statements

 Example

i = 0

while i < 5

 print(i)

i += 1

else:

 print("Over")

 While searching an elemnt in the sequence is not found,
else will be the best option to display the item not found

Misc Statements

Misc Statements
Break

 Example

x = 10

while x >= 1:

 print("x = ", x)

 x -= 1

 if x == 5:

 break

Misc Statements
Continue

 Example

x = 10

while x >= 1:

 if x == 5:

 x -= 1

 continue

 print("x = ", x)

 x -= 1

Misc Statements
Pass

 Example-1

x = 0

while x < 10:

 x += 1

 if x == 5:

 pass

 print(x)

Misc Statements
Pass

 Example-2: Program to retrieve only the negative numbers from the list

num = [1, 2, 3, -4, -5, -6, 7, 8]

for i in num:

 if (i > 0):

 pass

 else:

 print(i)

Pass does nothing

Misc Statements
Assert

 Syntax:

assert expression, message

 Example-1

num = int(input("Enter the number greater than zero: "))

assert num > 0, "Wrong input"

print("Num: ", num)

Misc Statements
Assert: Try Except

 Example-1

num = int(input("Enter the number greater than zero: "))

try:

 assert num > 0, "Wrong input"

 print("Num: ", num)

except AssertionError:

 print("You entered wrong input")

 print("Enter positive number")

Misc Statements
Return

 Example-1: To add two numbers & return the result

def sum(a, b):

return a + b

res = sum(5, 10)

print(res)

THANK YOU

Array

Team Emertxe

Single Dimensional Arrays

Single Dimensional Arrays
Creating an Array

Syntax array_name = array(type_code, [elements])

Example-1 a = array(‘i’, [4, 6, 2, 9])

Example-2 a = array(‘d’, [1.5, -2.2, 3, 5.75])

Single Dimensional Arrays
Creating an Array

Typecode C Type Sizes

‘b’ signed integer 1

‘B’ unsigned integer 1

‘i’ signed integer 2

‘I’ unsigned integer 2

‘l’ signed integer 4

‘L’ unsigned integer 4

‘f’ floating point 4

‘d’ double precision floating point

8

‘u’ unicode character 2

Single Dimensional Arrays
Importing an Array Module

import array a = array.array(‘i’, [4, 6, 2, 9])

import array as ar a = ar.array(‘i’, [4, 6, 2, 9])

from array import * a = array(‘i’, [4, 6, 2, 9])

Importing an Array Module
Example-1

import array

#Create an array

a = array.array("i", [1, 2, 3, 4])

#print the items of an array

print("Items are: ")

for i in a:

 print(i)

Importing an Array Module
Example-2

from array import *

#Create an array

a = array("i", [1, 2, 3, 4])

#print the items of an array

print("Items are: ")

for i in a:

 print(i)

Importing an Array Module
Example-3

from array import *

#Create an array

a = array('u', ['a', 'b', 'c', 'd'])

#Here, 'u' stands for unicode character

#print the items of an array

print("Items are: ")

for ch in a:

 print(ch)

Importing an Array Module
Example-4

from array import *

#Create first array

a = array('i', [1, 2, 3, 4])

#From first array create second

b = array(a.typecode, (i for i in a))

#print the second array items

print("Items are: ")

for i in b:

 print(i)

#From first array create third

c = array(a.typecode, (i * 3 for i in a))

#print the second array items

print("Items are: ")

for i in c:

 print(i)

Indexing & Slicing on Array
Example-1: Indexing

#To retrieve the items of an array using array index

from array import *

#Create an array

a = array('i', [1, 2, 3, 4])

#Get the length of the array

n = len(a)

#print the Items

for i in range(n):

 print(a[i], end=' ')

Indexing & Slicing on Array
Example-2: Indexing

#To retrieve the items of an array using array index using while loop

from array import *

#Create an array

a = array('i', [1, 2, 3, 4])

#Get the length of the array

n = len(a)

#print the Items

i = 0

while i < n:

 print(a[i], end=' ')

 i += 1

Indexing & Slicing on Array
Slicing

Syntax arrayname[start: stop: stride]

Example arr[1: 4: 1]

Prints items from index 1 to 3 with the step size of 1

Indexing & Slicing on Array
Example-3: Slicing

#Create an array
x = array('i', [10, 20, 30, 40, 50, 60])

#Create array y with Items from 1st to 3rd from x
y = x[1: 4]
print(y)

#Create array y with Items from 0th till the last Item in x
y = x[0:]
print(y)

#Create array y with Items from 0th till the 3rd Item in x
y = x[: 4]
print(y)

#Create array y with last 4 Items in x
y = x[-4:]
print(y)

#Stride 2 means, after 0th Item, retrieve every 2nd Item from x
y = x[0: 7: 2]
print(y)

#To display range of items without storing in an array
for i in x[2: 5]:
 print(i)

Indexing & Slicing on Array
Example-4: Slicing

#To retrieve the items of an array using array index using for loop

from array import *

#Create an array

a = array('i', [1, 2, 3, 4])

#Display elements from 2nd to 4th only

for i in a[2: 5]:

print(i)

Processing the Array

Method Description

a.append(x) Adds an element x at the end of the existing array a

a.count(x) Returns the numbers of occurrences of x in the array a

a.extend(x) Appends x at the end of the array a. ‘x’ can be another array or an
iterable object

a.index(x) Returns the position number of the first occurrence of x in the
array. Raises ‘ValueError’ if not found

a.insert(i, x) Inserts x in the position i in the array

Processing the Array

Method Description

a.pop(x) Removes the item x from the arry a and returns it

a.pop() Removes last item from the array a

a.remove(x) Removes the first occurrence of x in the array a. Raises
‘ValueError’ if not found

a.reverse() Reverse the order of elements in the array a

a.tolist() Converts the array ‘a’ into a list

Processing the Array
Examples

from array import *

#Create an array

a = array('i', [1, 2, 3, 4, 5])

print(a)

#Append 6 to an array

a.append(6)

print(a)

#Insert 11 at position 1

a.insert(1, 11)

print(a)

#Remove 11 from the array

a.remove(11)

print(a)

#Remove last item using pop()

item = a.pop()

print(a)

print("Item pop: ", item)

Processing the Array
Exercises

1. To store student’s marks into an array and find total marks and percentage of marks

2. Implement Bubble sort

3. To search for the position of an item in an array using sequential search

4. To search for the position of an element in an array using index() method

Single Dimensional Arrays
Numpy

Single Dimensional Arrays
Importing an numpy

import numpy a = numpy.array([4, 6, 2, 9])

import numpy as np a = np.array([4, 6, 2, 9])

from numpy import * a = array([4, 6, 2, 9])

Single Dimensional Arrays
Creating an Array: numpy-array()

Example-1: To create an array of int datatype

a = array([10, 20, 30, 40, 50], int)

Example-2: To create an array of float datatype

a = array([10.1, 20.2, 30.3, 40.4, 50.5], float)

Example-2: To create an array of float datatype

a = array([10.1, 20.2, 30.3, 40.4, 50.5], float)

Example-3: To create an array of float datatype without specifying the float datatype

a = array([10, 20, 30.3, 40, 50])

Note: If one item in the array is of float type, then Python interpreter converts
remaining items into the float datatype

Example-4: To create an array of char datatype

a = array([‘a’, ‘b’, ‘c’, ‘d’])

Note: No need to specify explicitly the char datatype

Single Dimensional Arrays
Creating an Array: numpy-array()

Program-1: To create an array of char datatype

from numpy import *

a = array(['a', 'b', 'c', 'd'])
print(a)

Program-2: To create an array of str datatype

from numpy import *

a = array(['abc', 'bcd', 'cde', 'def'], dtype=str)
print(a)

Single Dimensional Arrays
Creating an Array: numpy-array()

Program-3: To create an array from another array using numpy

from numpy import *

a = array([1, 2, 3, 4, 5])
print(a)

#Create another array using array() method
b = array(a)
print(a)

#Create another array by just copy
c = a
print(a)

Single Dimensional Arrays
Creating an Array: numpy-linspace()

Syntax linspace(start, stop, n)

Example a = linspace(0, 10, 5)

Description Create an array ‘a’ with starting element 0 and ending 10.
This range is divide into 5 equal parts
Hence, items are 0, 2.5, 5, 7.5, 10

Program-1: To create an array with 5 equal points using linspace

from numpy import *

#Divide 0 to 10 into 5 parts and take those points in the array

a = linspace(0, 10, 5)

print(a)

Single Dimensional Arrays
Creating an Array: numpy-logspace()

Syntax logspace(start, stop, n)

Example a = logspace(1, 4, 5)

Description Create an array ‘a’ with starting element 10^1 and ending 10^4.
This range is divide into 5 equal parts
Hence, items are 10. 56.23413252 316.22776602 1778.27941004 10000.

Program-1: To create an array with 5 equal points using logspace

from numpy import *

#Divide the range 10^1 to 10^4 into 5 equal parts

a = logspace(1, 4, 5)

print(a)

Single Dimensional Arrays
Creating an Array: numpy-arange()

Syntax arange(start, stop, stepsize)

Example-1 arange(10) Produces items from 0 - 9

Example-2 arange(5, 10) Produces items from 5 - 9

Example-3 arange(1, 10, 3) Produces items from 1, 4, 7

Example-4 arange(10, 1, -1) Produces items from [10 9 8 7 6 5 4 3 2]

Example-5 arange(0, 10, 1.5) Produces [0. 1.5 3. 4.5 6. 7.5 9.]

Program-1: To create an array with even number upto 10

from numpy import *

a = arange(2, 11, 2)
print(a)

Single Dimensional Arrays
Creating Array: numpy-zeros() & ones()

Syntax zeros(n, datatype)

ones(n, datatype)

Example-1 zeros(5) Produces items [0. 0. 0. 0. 0.]

Default datatype is float

Example-2 zeros(5, int) Produces items [0 0 0 0 0]

Example-3 ones(5, float) Produces items [1. 1. 1. 1. 1.]

Program-1: To create an array using zeros() and ones()

from numpy import *

a = zeros(5, int)
print(a)

b = ones(5) #Default datatype is float
print(b)

Single Dimensional Arrays
Vectorized Operations

Example-1 a = array([10, 20 30.5, -40])

a = a + 5 #Adds 5 to each item of an array

Example-2 a1 = array([10, 20 30.5, -40])

a2 = array([1, 2, 3, 4])

a3 = a1 + a2 #Adds each item of a1 and a2

Importance of vectorized operations

1. Operations are faster

 - Adding two arrays in the form a + b is faster than taking corresponding items of both
 arrays and then adding them.

2. Syntactically clearer
 - Writing a + b is clearer than using the loops

3. Provides compact code

Single Dimensional Arrays
Mathematical Operations

sin(a) Calculates sine value of each item in the array a

arcsin(a) Calculates sine inverse value of each item in the array a

log(a) Calculates natural log value of each item in the array a

abs(a) Calculates absolute value of each item in the array a

sqrt(a) Calculates square root value of each item in the array a

power(a, n) Calculates a ^ n

exp(a) Calculates exponential value of each item in the array a

sum(a) Calculates sum of each item in the array a

prod(a) Calculates product of each item in the array a

min(a) Returns min value in the array a

max(a) Returns max value in the array a

Single Dimensional Arrays
Comparing Arrays

 Relational operators are used to compare arrays of same size

 These operators compares corresponding items of the arrays and return another array with
Boolean values

Program-1: To compare two arrays and display the resultant Boolean type array

from numpy import *

a = array([1, 2, 3])
b = array([3, 2, 3])

c = a == b
print(c)

c = a > b
print(c)

c = a <= b
print(c)

Single Dimensional Arrays
Comparing Arrays

 any(): Used to determine if any one item of the array is True

 all(): Used to determine if all items of the array are True

Program-2: To know the effects of any() and all()

from numpy import *

a = array([1, 2, 3])
b = array([3, 2, 3])

c = a > b
print(c)

print("any(): ", any(c))
print("all(): ", all(c))

if (any(a > b)):
 print("a contains one item greater than those of b")

Single Dimensional Arrays
Comparing Arrays

 logical_and(), logical_or() and logical_not() are useful to get the Boolean array as a

 result of comparing the compound condition

Program-3: To understand the usage of logical functions

from numpy import *

a = array([1, 2, 3])
b = array([3, 2, 3])

c = logical_and(a > 0, a < 4)
print(c)

Single Dimensional Arrays
Comparing Arrays

 where(): used to create a new array based on whether a given condition is True or False

 Syntax: a = where(condition, exp1, exp2)

 If condition is True, the exp1 is evaluated, the result is stored in array

 a, else exp2 will be evaluated

Program-4: To understand the usage of where function

from numpy import *

a = array([1, 2, 3], int)

c = where(a % 2 == 0, a, 0)
print(c)

Single Dimensional Arrays
Comparing Arrays

 where(): used to create a new array based on whether a given condition is True or False

 Syntax: a = where(condition, exp1, exp2)

 If condition is True, the exp1 is evaluated, the result is stored in array

 a, else exp2 will be evaluated

Exercise-1: To retrieve the biggest item after comparing two arrays using where()

Single Dimensional Arrays
Comparing Arrays

 nonzero(): used to know the positions of items which are non-zero

 Returns an array that contains the indices of the items of the array which
are non-zero

 Syntax: a = nonzero(array)

Program-5: To retrieve non zero items from an array

from numpy import *

a = array([1, 2, 0, -1, 0, 6], int)

c = nonzero(a)

#Display the indices
for i in c:
 print(i)

#Display the items
print(a[c])

Single Dimensional Arrays
Aliasing Arrays

 ‘Aliasing means not copying’. Means another name to the existing object

Program-1: To understand the effect of aliasing

from numpy import *

a = arange(1, 6)

b = a

print(a)

print(b)

#Modify 0th Item

b[0] = 99

print(a)

print(b)

Single Dimensional Arrays
Viewing & Copying

 view(): To create the duplicate array

 Also called as ‘shallow copying’

Program-1: To understand the view()

from numpy import *

a = arange(1, 6)

b = a.view() #Creates new array

print(a)

print(b)

#Modify 0th Item

b[0] = 99

print(a)

print(b)

Single Dimensional Arrays
Viewing & Copying

 copy(): To create the copy the original array

 Also called as ‘deep copying’

Program-1: To understand the view()

from numpy import *

a = arange(1, 6)

b = a.copy() #Creates new array

print(a)

print(b)

#Modify 0th Item

b[0] = 99

print(a)

print(b)

Multi Dimensional Arrays
Numpy

Multi Dimensional Arrays
Creating an Array

Example-1: To create an 2D array with 2 rows and 3 cols

a = array([[1, 2, 3],
 [4, 5, 6]]

Example-2: To create an array of float datatype

a = array([10.1, 20.2, 30.3, 40.4, 50.5], float)

Example-2: To create an 3D array with 2-2D arrays with each 2 rows and 3 cols

a = array([[[1, 2, 3],[4, 5, 6]]
 [[1, 1, 1], [1, 0, 1]]]

Multi Dimensional Arrays
Attributes of an Array: The ndim

Example-2: To understand the usage of the ndim attribute

a = array([[[1, 2, 3],[4, 5, 6]]
 [[1, 1, 1], [1, 0, 1]]]

print(a.ndim)

● The ‘ndim’ attribute represents the number of dimensions or axes of an array

● The number of dimensions are also called as ‘rank’

Example-1: To understand the usage of the ndim attribute

a = array([1, 2, 3])

print(a.ndim)

Multi Dimensional Arrays
Attributes of an Array: The shape

Example-2: To understand the usage of the ‘shape’ attribute

a = array([[1, 2, 3],[4, 5, 6]])

print(a.shape)

Outputs: (2, 3)

● The ‘shape’ attribute gives the shape of an array

● The shape is a tuple listing the number of elements along each dimensions

Example-1: To understand the usage of the ‘shape’ attribute

a = array([1, 2, 3])

print(a.shape)

Outputs: (5,)

Example-3: To ‘shape’ attribute also changes the rows and cols

a = array([[1, 2, 3],[4, 5, 6]])

a.shape = (3, 2)

print(a)

Outputs:

[[1 2]
 [3 4]
 [5 6]]

Multi Dimensional Arrays
Attributes of an Array: The size

Example-2: To understand the usage of the ‘size’ attribute

a = array([[1, 2, 3],[4, 5, 6]])

print(a.size)

Outputs: 6

● The ‘size’ attribute gives the total number of items in an array

Example-1: To understand the usage of the ‘size’ attribute

a = array([1, 2, 3])

print(a.size)

Outputs: 5

Multi Dimensional Arrays
Attributes of an Array: The itemsize

Example-2: To understand the usage of the ‘size’ attribute

a = array([1.1, 2.3])

print(a.itemsize)

Outputs: 8

● The ‘itemsize’ attribute gives the memory size of an array element in bytes

Example-1: To understand the usage of the ‘itemsize’ attribute

a = array([1, 2, 3, 4, 5])

print(a.itemsize)

Outputs: 4

Multi Dimensional Arrays
Attributes of an Array: The dtype

Example-2: To understand the usage of the ‘dtype’ attribute

a = array([1.1, 2.3])

print(a.dtype)

Outputs: float64

● The ‘dtype’ attribute gives the datatype of the elements in the array

Example-1: To understand the usage of the ‘dtype’ attribute

a = array([1, 2, 3, 4, 5])

print(a.dtype)

Outputs: int32

Multi Dimensional Arrays
Attributes of an Array: The nbytes

Example-2: To understand the usage of the ‘nbytes’ attribute

a = array([1.1, 2.3])

print(a.nbytes)

Outputs: 16

● The ‘nbytes’ attribute gives the total number of bytes occupied by an array

Example-1: To understand the usage of the ‘nbytes’ attribute

a = array([1, 2, 3, 4, 5])

print(a.nbytes)

Outputs: 20

Multi Dimensional Arrays
Methods of an Array: The reshape()

Example-2: To understand the usage of the ‘reshape’ method

#Change the shape to 5 rows, 2 cols
a = a.reshape(5, 2)

print(a)

Outputs:

[[0 1]
 [2 3]
 [4 5]
 [6 7]
 [8 9]]

● The ‘reshape’ method is useful to change the shape of an array

Example-1: To understand the usage of the ‘reshape’ method

a = arange(10)

#Change the shape as 2 Rows, 5 Cols
a = a.reshape(2, 5)

print(a)

Outputs:

[[0 1 2 3 4]
 [5 6 7 8 9]]

Multi Dimensional Arrays
Methods of an Array: The flatten()

● The ‘flatten’ method is useful to return copy of an array collapsed into ine
dimension

Example-1: To understand the usage of the ‘flatten’ method

#flatten() method
a = array([[1, 2], [3, 4]])
print(a)

#Change to 1D array
a = a.flatten()
print(a)

Outputs:

[1 2 3 4]

Multi Dimensional Arrays
Methods of creating an 2D-Array

● Using array() function

● Using ones() and zeroes() functions

● Uisng eye() function

● Using reshape() function

Multi Dimensional Arrays
Creation of an 2D-Array: array()

Example-1:

a = array([[1, 2], [3, 4]])
print(a)

Outputs:

[[1, 2],
[3, 4]]

Multi Dimensional Arrays
Creation of an 2D-Array: ones() & zeros()

Syntax zeros((r, c), dtype)

ones((r, c), dtype)

Example-1 a = ones((3, 4), float) Produces items

[[1. 1. 1. 1.]
[1. 1. 1. 1.]
[1. 1. 1. 1.]]

Example-2 b = zeros((3, 4), int) Produces items

[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]]

Multi Dimensional Arrays
Creation of an 2D-Array: The eye()

Syntax eye(n, dtype=datatype)

Description - Creates ‘n’ rows & ‘n’ cols

- Default datatype is float

Example-1 a = eye(3) - Creates 3 rows and 3 cols

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

● The eye() function creates 2D array and fills the items in the diagonal with 1’s

Multi Dimensional Arrays
Creation of an 2D-Array: The reshape()

Syntax reshape(arrayname, (n, r, c))

Description arrayname – Represents the name of the array whose elements to be
 converted

n – Numbers of arrays in the resultant array

r, c – Number of rows & cols respectively

Example-1 a = array([1, 2, 3, 4, 5, 6])

b = reshape(a, (2, 3))

print(b)

Outputs:

[[1 2 3]
[4 5 6]]

● Used to convert 1D into 2D or nD arrays

Multi Dimensional Arrays
Creation of an 2D-Array: The reshape()

Syntax reshape(arrayname, (n, r, c))

Description arrayname – Represents the name of the array whose elements to be
 converted

n – Numbers of arrays in the resultant array

r, c – Number of rows & cols respectively

Example-2 a = arange(12)

b = reshape(a, (2, 3, 2))

print(b)

Outputs:

[[0 1]
[2 3]
[4 5]]

[[6 7]
[8 9]
[10 11]]

● Used to convert 1D into 2D or nD arrays

Multi Dimensional Arrays
Indexing of an 2D-Array

Program-1: To understand indexing of 2D arrays

from numpy import *

#Create an 2D array with 3 rows, 3 cols

a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

#Display only rows

for i in range(len(a)):

 print(a[i])

#display item by item

for i in range(len(a)):

 for j in range(len(a[i])):

 print(a[i][j], end=' ')

Multi Dimensional Arrays
Slicing of an 2D-Array

#Create an array
a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
a = reshape(a, (3, 3))
print(a)

Produces:

[[1 2 3]
[4 5 6]
[7 8 9]]

a[:, :]
a[:]
a[: :]

Produces:

[[1 2 3]
[4 5 6]
[7 8 9]]

#Display 0th row
a[0, :]

#Display 0th col
a[:, 0]

#To get 0th row, 0th col item
a[0:1, 0:1]

Matrices in Numpy

Matrices in Numpy

Syntax matrix-name = matrix(2D Array or String)

Example-1 a = [[1, 2, 3], [4, 5, 6]]

a = matrix(a)

print(a)

Outputs:

[[1 2 3]
[4 5 6]]

Example-2 a = matrix([[1, 2, 3], [4, 5, 6]]) Outputs:

[[1 2 3]
[4 5 6]]

Example-3 a = ‘1 2; 3 4; 5 6’

b = matrix(a)

[[1 2]
[3 4]
[5 6]]

Matrices in Numpy
Getting Diagonal Items

Function diagonal(matrix)

Example-1 #Create 3 x 3 matrix

a = matrix("1 2 3; 4 5 6; 7 8 9")

#Find the diagonal items

d = diagonal(a)

print(d)

Outputs:

[1 5 9]

Matrices in Numpy
Finding Max and Min Items

Function max()
min()

Example-1 #Create 3 x 3 matrix

a = matrix("1 2 3; 4 5 6; 7 8 9")

#Print Max + Min Items

big = a.max()

small = a.min()

print(big, small)

Outputs:

9 1

Matrices in Numpy
Exercise

1. To find sum, average of elements in 2D array

2. To sort the Matrix row wise and column wise

3. To find the transpose of the matrix

4. To accept two matrices and find thier sum

5. To accept two matrices and find their product

Note: Read the matrices from the user and make the program user friendly

THANK YOU

Strings

Team Emertxe

Strings And Characters

Strings And Characters
Creating Strings

Example-1 s = 'Welcome to Python'

Example-2 s = "Welcome to Python"

Example-3 s = """
 Welcome to Python
 """

Example-4 s = '''
 Welcome to Python
 '''

Example-5 s = "Welcome to 'Core' Python"

Example-6 s = 'Welcome to "Core" Python'

Example-7 s = "Welcome to\tCore\nPython"

Example-8 s = r"Welcome to\tCore\nPython"

Strings And Characters
Length of a String

len() Is used to find the length of the string

Example str = "Core Python"

n = len(str)

print("Len: ", n)

Strings And Characters
Indexing the Strings

str = "Core Python"

#Method-1: Access each character using
while loop
n = len(str)

i = 0

while i < n:

 print(str[i], end=' ')

 i += 1

#Method-2: Using for loop

for i in str:

 print(i, end=' ')

#Method-3: Using slicing operator

for i in str[::]:

 print(i, end='')

print()

#Method-4: Using slicing operator

#Take sthe step size as -1
for i in str[: : -1]:

 print(i, end='')

 Both positive and Negative indexing is possible in Python

Strings And Characters
Slicing the Strings

str = "Core Python"

1 str[: :]

Prints all

2 str[0: 9: 1]

Access the string from 0th to 8th element

3 str[0: 9: 2]

Access the string in the step size of 2

4 str[2: 3: 1]

Access the string from 2nd to 3rd Character

5 str[: : 2] Access the entire string in the step size of 2

6 str[: 4:] Access the string from 0th to 3rd location in steps of 1

7 str[-4: -1:] Access from str[-4] to str[-2] from left to right

8 str[-6: :] Access from -6 till the end of the string

9 str[-1: -4: -1] When stepsize is negative, then the items are counted from right to
left

10 str[-1: : -1] Retrieve items from str[-1] till the first element from right to left

Strings And Characters
Repeating the Strings

 The repetition operator * is used for repeating the strings

Example-1 str = "Core Python"

print(str * 2)

Example-2

print(str[5: 7] * 2)

Strings And Characters
Concatenation of Strings

 + is used as a concatenation operator

Example-1 s1 = "Core"

s2 = "Python"

s3 = s1 + s2

Strings And Characters
Membership Operator

 We can check, if a string or a character is a member of another string or not using
'in' or 'not in' operator

 'in' or 'not in' makes case sensitive comaprisons

Example-1 str = input("Enter the first string: ")

sub = input("Enter the second string: ")

if sub in str:

 print(sub+" is found in main string")

else:

 print(sub+" is not found in main string")

Strings And Characters
Removing Spaces

str = " Ram Ravi "

lstrip() #Removes spaces from the left side

print(str.lstrip())

rstrip() #Removes spaces from the right side

print(str.rstrip())

strip() #Removes spaces from the both sides

print(str.strip())

Strings And Characters
Finding the Sub-Strings

 Methods useful for finding the strings in the main string

 - find()

 - rfind()

 - index()

 - rindex()

 find(), index() will search for the sub-string from the begining

 rfind(), rindex() will search for the sub-string from the end

 find(): Returns -1, if sub-string is not found

 index(): Returns 'ValueError' if the sub-string is not found

Strings And Characters
Finding the Sub-Strings

Syntax mainstring.find(substring, beg, end)

Example str = input("Enter the main string:")

sub = input("Enter the sub string:")

#Search for the sub-string

n = str.find(sub, 0, len(str))

if n == -1:

 print("Sub string not found")

else:

 print("Sub string found @: ", n + 1)

Strings And Characters
Finding the Sub-Strings

Syntax mainstring.index(substring, beg, end)

Example str = input("Enter the main string:")

sub = input("Enter the sub string:")

#Search for the sub-string

try:

 #Search for the sub-string

 n = str.index(sub, 0, len(str))

except ValueError:

 print("Sub string not found")

else:

 print("Sub string found @: ", n + 1)

Strings And Characters
Finding the Sub-Strings: Exercise

1 To display all positions of a sub-string in a given main string

Strings And Characters
Counting Sub-Strings in a String

count() To count the number of occurrences of a sub-string in a main string

Syntax stringname.count(substring, beg, end)

Example-1 str = “New Delhi”

n = str.count(‘Delhi’)

Example-2 str = “New Delhi”

n = str.count(‘e’, 0, 3)

Example-3 str = “New Delhi”

n = str.count(‘e’, 0, len(str))

Strings And Characters
Strings are Immutable

 Immutable object is an object whose content cannot be changed

Immutable Numbers, Strings, Tuples

Mutable Lists, Sets, Dictionaries

Reasons: Why strings are made immutable in Python

Performance Takes less time to allocate the memory for the Immutable objects, since
their memory size is fixed

Security Any attempt to modify the string will lead to the creation of new object in
memory and hence ID changes which can be tracked easily

Strings And Characters
Strings are Immutable

 Immutable object is an object whose content cannot be changed

 Example:

 s1 = “one”

 s2 = “two”

 S2 = s1

one two

S1 S2

one two

S1 S2

Strings And Characters
Replacing String with another String

replace() To replace the sub-string with another sub-string

Syntax stringname.replace(old, new)

Example str = "Ram is good boy"

str1 = str.replace("good", "handsome")

print(str1)

Strings And Characters
Splitting And Joining Strings

join() - Groups into one sring

Syntax separator.join(str)

- separator: Represents the character to be used between two strings

- str: Represents tuple or list of strings

Example str = ("one", "two", "three")

str1 = "-".join(str)

split() - Used to brake the strings

- Pieces are returned as a list

Syntax stringname.split(‘character’)

Example str = "one,two,three"

lst = str.split(',')

Strings And Characters
Changing the Case of the Strings

Methods upper()

lower()

swapcase()

title()

str = "Python is the future"

upper() print(str.upper()) PYTHON IS THE FUTURE

lower() print(str.lower()) python is the future

swapcase() print(str.swapcase()) pYTHON IS THE FUTURE

title() print(str.title()) Python Is The Future

Strings And Characters
Check: Starting & Ending of Strings

Methods startswith()

endswith()

str = "This is a Python"

startswith() print(str.startswith("This")) True

endswith() print(str.endswith("This")) False

Strings And Characters
String Testing Methods

isalnum() Returns True, if all characters in the string are alphanumeric(A – Z, a – z, 0
– 9) and there is atleast one character

isalpha() Returns True, if the string has atleast one character and all characters are
alphabets(A - Z, a – z)

isdigit() Returns True if the string contains only numeric digits(0-9) and False
otherwise

islower() Returns True if the string contains at least one letter and all characters are
in lower case; otherwise it returns False

isupper() Returns True if the string contains at least one letter and all characters are
in upper case; otherwise it returns False

istitle() Returns True if each word of the string starts with a capital letter and there
at least one character in the string; otherwise it returns False

isspace() Returns True if the string contains only spaces; otherwise, it returns False

Strings And Characters
Formatting the strings

format() Presenting the string in the clearly understandable manner

Syntax

"format string with replacement fields". format(values)

id = 10
name = "Ram"
sal = 19000.45

print("{}, {}, {}". format(id, name, sal))

print("{}-{}-{}". format(id, name, sal))

print("ID: {0}\tName: {1}\tSal: {2}\n". format(id, name, sal))

print("ID: {2}\tName: {0}\tSal: {1}\n". format(id, name, sal))

print("ID: {two}\tName: {zero}\tSal: {one}\n". format(zero=id, one=name, two=sal))

print("ID: {:d}\tName: {:s}\tSal: {:10.2f}\n". format(id, name, sal))

Strings And Characters
Formatting the strings

format() Presenting the string in the clearly understandable manner

Syntax

"format string with replacement fields". format(values)

n = 5000

print("{:*>15d}". format(num))

print("{:*^15d}". format(num))

Strings And Characters
Exercise

1. To know the type of character entered by the user

2. To sort the strings in alphabetical order

3. To search for the position for a string in agiven group of strings

4. To find the number of words in a given strings

5. To insert the sub-string into a main string in a particular position

THANK YOU

Functions

Team Emertxe

Function vs Method

Function vs Method

 A function can be written individually in a Python

 Function is called using its name

 A function within the class is called “Method”

 Method is called in two ways,

 objectname.methodname()

 Classname.methodname()

Function & Method are same except thier placement and the way they are
called

Defining & Calling a Function

Defining & Calling

Syntax

def function_name(para1, para2, para3,...)
""" docstring """
statements

Example

def sum(a, b):
 """ This function finds sum of two numbers """
 c = a + b
 print('Sum= ', c)

#call the function
sum(10, 15)

Returning Value/s From a Function

Returning a Value

Example Description

return c Returns c from the function

return 100 Returns constant from a
function

return lst Return thelist that contains values

return z, y, z Returns more than one value

Returning a Value

Example

A function to add two numbers
def sum(a, b):
 """ This function finds sum of two numbers """
 c = a + b
 return c # return result

#call the function
x = sum(10, 15)
print('The Sum is: ', x)

y = sum(1.5, 10.75)
print('The Sum is: ', y)

Returning ‘M’ Values

Example

A function that returns two results
def sum_sub(a, b):
 """ this function returns results of
 addition and subtraction of a, b """
 c = a + b
 d = a - b
 return c, d

get the results from sum_sub() function
x, y = sum_sub(10, 5)

display the results
print("Result of addition: ", x)
print("Result of subtraction: ", y)

Functions are First Class Objects

Functions
First Class Objects
 Functions are considered as first class objects

 When function is defined, python interpreter internally creates an Object

 Noteworthy:

 It is possible to assign a function to a variable

 It is possible to define one function inside another function

 It is possible to pass a function as parameter to a another function

 It is possible that a function can return another function

Pass by Object References

Functions
Pass by Object References
 The values are sent to the function by means of Object References

 Objects are created on heap memory at run time

 Location of the object can be obtained by using id() function

Functions
Pass by Object References
 Example-1: To pass an integer to a function and modify it

passing an integer to a function
def modify(x):
 """ reassign a value to the variable """
 x = 15
 print(x, id(x))

call mofify() and pass x
x = 10
modify(x)
print(x, id(x))

Inside modify()
function

x 15

10x

Outside the
function

Heap

Functions
Pass by Object References
 Example-1: To pass a list to a function and modify it

passing an list to a function
def modify(lst):
 """ to create a new list """
 lst = [10, 11, 12]
 print(lst, id(lst))

call mofify() and pass lst
lst = [1, 2, 3, 4]
modify(lst)
print(lst, id(lst))

Inside modify()
function

lst

1, 2, 3, 4lst

Outside the
function

Heap

If altogether a new object inside a function is created, then it will
not be available outside the function

10, 11, 12

Formal and Actual Arguments

Functions
Formal and Actual Arguments

A function to add two numbers
def sum(a, b):
 """ This function finds sum of two numbers """
 c = a + b
 return c # return result

#call the function
x = sum(10, 15)
print('The Sum is: ', x)

y = sum(1.5, 10.75)
print('The Sum is: ', y)

Actual

Formal

Functions
Formal and Actual Arguments

 Types: Actual Arguments

 Positional

 Keyword

 Default

 Variable length

Actual Arguments
Positional Arguments

 Arguments are passed to a function in correct positional order

positional arguments demo
def attach(s1, s2):
 """ to joins1 and s2 and display total string """
 s3 = s1 + s2
 print('Total string: ' + s3)

call attach() and pass 2 strings
attach('New','York') # positional arguments

Actual Arguments
Keyword Arguments

 Keyword Arguments are arguments that identify the parameters by their names

key word arguments demo
def grocery(item, price):
 """ to display the given arguments """
 print('Item = %s' % item)
 print('Price = %.2f' % price)

call grocerry() and pass two arguments
grocery(item='sugar', price = 50.75) #keyword arguments
grocery(price = 88.00, item = 'oil') #keyword arguments

Actual Arguments
Variable Length Arguments-1

 An argument that can accept any number of arguments

 Syntax: def function_name(farg, *args)

 - farg: Formal argument

 - *args: Can take 1 or more arguments

 *args will be stored as tuple

variable length arguments demo

def add(farg, *args): # *args can take 1 or more values

 """ to add given numbers """

 print('Formal arguments= ', farg)

 sum = 0

 for i in args:

 sum += i

 print('Sum of all numbers= ', (farg + sum))

call add() and pass arguments

add(5, 10)

add(5, 10, 20, 30)

Actual Arguments
Variable Length Arguments-2

 An argument that can accept any number of values provided in the format of keys and values

 Syntax: def function_name(farg, **kwargs)

 - farg: Formal argument
 - **kwargs:

 - Called as keyword variable

 - Internally represents dictionary object

 **kwargs will be stored as dictionary

keyword variable argument demo

def display(farg, **kwargs): # **kwargs can take 0 or more values

 """ to add given values """

 print('Formal arguments= ', farg)

 for x, y in kwargs.items(): # items() will give pair of items

 print('key = {}, value = {}'.format(x, y))

pass 1 formal argument and 2 keyword arguments

display(5, rno = 10)

print()

#pass 1 formal argument and 4 keyword arguments

display(5, rno = 10, name = 'Prakesh')

Local and Global Variables

Local & Global Vars
The Global Keyword

 The global variable can be accessed inside the function using the global keyword

 - global var

accesing the global variable from inside a function

a = 1 # this is global variable

def myfunction():

 global a # this is global variable

 print('global a =', a) # display global variable

 a = 2 # modify global variable value

 print('modified a =', a) # display new value

myfunction()

print('global a =', a) # display modified value

Local & Global Vars
The Global Keyword

 Syntax to get a copy of the global variable inside the function and work on it

 - globals()[“global_var_name”]

#same name for global and local variable

a = 1 # this is global variable:

def myfunction():

 a = 2 # a is local var

 x = globals()['a'] # get global var into x

 print('global var a =', x) # display global variable

 print('local a =', a) # display new value

myfunction()

print('global a =', a)

Passing Group of Items to a
Function

Passing
The Group Of Items

 To pass the group of items to a function, accept them as a list and then pass it.

a function to find total and average
def calculate(lst):
 """ to find total and average """
 n = len(lst)
 sum = 0
 for i in lst:
 sum += i
 avg = sum / n
 return sum, avg

take a group of integers from keyboard
print('Enter numbers seperated by space: ')
lst = [int(x) for x in input().split()]

#call calculate() and pass the list
x, y = calculate(lst)
print('Total: ', x)
print('Average: ', y)

Example-1

Recursive Function

Recursions

 A function calling itself is called as Recursions

resursive function to calculate factorial

def factorial(n):

 """ to find factorial of n """

 if n == 0:

 result = 1

 else:

 result = n * factorial(n - 1)

 return result

find factorial values for first 10 numbers

for i in range(1, 11):

 print('Factorial of {} is {}'.format(i, factorial(i)))

 Example-1

Anonymous Functions Or
Lambdas

Lambdas

 A function without name is called ‘Anonymous functions’

 Anonymous functions are not defined using the ‘def’ keyword

 Defined using the keyword ‘lambda’, hence called as lambda function

 Example

Normal Function Anonymous Function

def square(x):
 return x * x

f = lambda x: x * x

#f = function name

#Calling the function

square(x)

#Calling the function

value = f(5)

 Syntax

lambda argument_list: expression

Lambdas
Example

 Example

lambda function to calculate square value

f = lambda x: x*x # write lambda function

value = f(5) # call lambda func

print('Square of 5 = ', value) # display result

Lambdas
using lambdas with filter()

 A filter() is useful to filter out the elements of a sequence depending on the
result of a function

 Syntax: filter(function, sequence)

 Example

def is_even(x):

if x % 2 == 0:

return True

else:

return False

 filter (is_even, lst)

- is_even function acts on every element on the lst

Lambdas
using lambdas with filter()

 Example

a normal function that returns

even numbers from a list

def is_even(x):

 if x % 2 == 0:

 return True

 else:

 return False

let us take a list of numbers

lst = [10, 23, 45, 46, 70, 99]

call filter() eith is_even() and list

lstl = list(filter(is_even, lst))

print(lstl)

lambda function that returns even numbers from
list

lst = [10, 23, 45, 46, 70, 99]

lstl = list(filter(lambda x: (x % 2 == 0), lst))

print(lstl)

Lambdas
using lambdas with map()

 A map() is similar to filter(), but it acts on each element of the sequence and changes the items

 Syntax: map(function, sequence)

 Example

Normal Function Lambdas

#map() function that gives squares

def squares(x):

 return x * x

#let us take a lis of numbers

lst = [1, 2, 3, 4, 5]

call map() with square()s and lst

lstl = list(map(squares, lst))

print(lstl)

lambda that returns squares

lst = [1, 2, 3, 4, 5]

lstl = list(map(lambda x: x * x, lst))

print(lstl)

Writing using the lambdas will be more elegant

Lambdas
using lambdas with reduce()

 A reduce() reduces a sequence of elements to a single value by processing the elements according to the
function supplied

 Syntax: reduce(function, sequence)

 Example

Lambdas

lambda that returns products of elements of a list

from functools import *

lst = [1, 2, 3, 4, 5]

result = reduce(lambda x, y: x * y, lst)

print(result)

import functools, since reduce() belongs to functools

Lambdas
using lambdas with reduce(): Exercise

Problem

To calculate sum of numbers from 1 to 50 using reduce() & lambda functions

import functools, since reduce() belongs to functools

Function Decorators

Function Decorators

 A decorator is a function that accepts a function as parameter and returns a
function

 A decorator takes the result of a function, modifies and returns it

Function Decorators
Steps to Create Decorators

 STEP-1: Define the decorator

 STEP-2: Define the function inside the decorator

def decor(fun):

def decor(fun):

def inner():

value = fun()

return value + 2

return inner

• STEP-3: Define one function

def num():
return 10

• STEP-4: Call the decorator

res = decor(num)

Function Decorators
Complete Program

a decorator that increments the value of a function by 2

def decor(fun): #this is decorator func

 def inner(): #this is inner func that modifies

 value = fun()

 return value + 2

 return inner # return inner function

take a function to which decorator should be applied

def num():

 return 10

#call decorator func and pass me

result_fun = decor(num) # result_fun represents ''inner function

print(result_fun()) # call result_fun and display

Function Decorators
@ decor

 To apply the decorator to a function

@decor
def num():

return 10

 It means decor() is applied to process or decorate the result of the num() function

 No need to call decorator explicitly and pass the function name

 @ is useful to call the decorator function internally

Function Decorators
@ decor: Example

a decorator that increments the value of a function by 2

def decor(fun): #this is decorator func

 def inner(): #this is inner func that modifies

 value = fun()

 return value + 2

 return inner # return inner function

take a function to which decorator should be applied

@decor #apply decor to the below function

def num():

 return 10

#call num() function and display its result

print(num())

Function Decorators
@ decor: More than one decorator

Without using @, decorators can be called

a decorator that increments the value of a
function by 2

def decor(fun): #this is decorator func

 def inner(): #inner func that modifies

 value = fun()

 return value + 2

 return inner # return inner function

a decorator that doubles the value of a function

def decor1(fun): #this is decorator func

 def inner(): #Inner func that modifies

 value = fun()

 return value * 2

 return inner # return inner function

take a function to which decorator should be
applied

@decor

@decor1

def num():

 return 10

#call num() function and apply decor1 and then
decor
print(num())

Function Generators

Function Generators

 Generator: Function that returns sequence of values

 It is written like ordinary function but it uses ‘yield’ statement

generator that returns sequence from x and y

def mygen(x, y):

 while x <= y:

 yield x

 x += 1

fill generator object with 5 and 10

g = mygen(5, 10)

display all numbers in the generator

for i in g:

 print(i, end=' ')

To retrieve element by element from a generator object,
use next() function

Creating Our Own Modules in
Python

Creating
Own Modules in Python

 A module represents a group of

1. Classes

2. Methods

3. Functions

4. Variables

 Modules can be reused

 Types:

 Built-in: sys, io, time ...

 User-defined

Creating
Own Modules in Python: Example

employee.py usage.py

to calculate dearness allowance
def da(basic):
 """ da is 80% of basic salary """
 da = basic * 80 / 100
 return da

from employee import *

calculate gross salary of employee by taking
basic

basic= float(input('Enter basic salary: '))

calculate gross salary

gross = basic + da(basic) + hra(basic)

print('Your gross salary: {:10.2f}'.
format(gross))

calculate net salary

net = gross - pf(basic) - itax(gross)

print('Your net salary: {:10.2f}'. format(net))

to calculate house rent allowance
def hra(basic):
 """ hra is 15% of basic salary """
 hra = basic * 15 / 100
 return hra

to calculate provident fund amount
def pf(basic):
 """ pf is 12% of basic salary """
 pf = basic * 12 / 100
 return pf

to calculate income tax
def itax(gross):
 """ tax is calculated
 at 10% on gross """
 tax = gross * 0.1
 return tax

The Special Variable __name__

The Special Variable
__name__

 It is internally created, when program is executed

 Stores information regarding whether the program is executed as an individual program or as a
module

 When a program is executed directly, it stores __main__

 When a program is executed as a module, the python interpreter stores module name

The Special Variable
__name__ : Example-1

#python program to display message. save this as one.py

def display():

 print('Hello Python')

if __name__ == '__main__':

 display() # call display func

 print('This code is run as a program')

else:

 print('This code is run as a module')

The Special Variable
__name__ : Example-2

in this program one.py is imported as a module. save this as two.py

import one

one.display() # call module one's display function.

THANK YOU

List And Tuples

Team Emertxe

List

List
Introduction

 Used for storing different types of data unlike arrays

Example-1 student = [10, "Amar", 'M', 50, 55, 57, 67, 47]

Example-2 e_list = [] #Empty List

 Indexing + Slicing can be applied on list

Example-1 print(student[1]) Gives "Amar"

Example-2 print(student[0: 3: 1])

Prints [10, "Amar", 'M']

Example-3 student[::] Print all elements

List
Examples

Example-1 #Create list with integer numbers

num = [10, 20, 30, 40, 50]

print(num)

print("num[0]: %d\tnum[2]: %d\n" % (num[0], num[2]))

Example-2 #Create list with strings

names = ["Ram", "Amar", "Thomas"]

print(names)

print("names[0]: %s\tnames[2]: %s\n" % (names[0], names[2]))

Example-3 #Create list with different dtypes

x = [10, 20, 1.5, 6.7, "Ram", 'M']

print(x)

print("x[0]: %d\tx[2]: %f\tx[4]: %s\tx[5]: %c\n" %(x[0], x[2], x[4], x[5]))

List
Creating list using range()

Example #Create list

num = list(range(4, 9, 2))

print(num)

List
Updating list

1 Creation lst = list(range(1, 5))
print(lst)

[1, 2, 3, 4]

2 append lst.append(9)
print(lst)

[1, 2, 3, 4, 9]

3 Update-1 lst[1] = 8
print(lst)

[1, 8, 3, 4, 9]

4 Update-2 lst[1: 3] = 10, 11
print(lst)

[1, 10, 11, 4, 9]

5 delete del lst[1]
print(lst)

[1, 11, 4, 9]

6 remove lst.remove(11)
print(lst)

[1, 4, 9]

7 reverse lst.reverse()
print(lst)

[9, 4, 1]

List
Concatenation of Two List

'+' operator is used to join two list

Example x = [10, 20, 30]

y = [5, 6, 7]

print(x + y)

List
Repetition of List

'*' is used to repeat the list 'n' times

Example x = [10, 20, 30]

print(x * 2)

List
Membership of List

'in' and 'not in' operators are used to check, whether an element belongs to the list
or not

Example x = [1, 2, 3, 4, 5]
a = 3
print(a in x)

Returns True, if the item is found
in the list

Example x = [1, 2, 3, 4, 5]
a = 7
print(a not in x)

Returns True, if the item is not
found in the list

List
Aliasing And Cloning Lists

Aliasing: Giving new name for the existing list

Example x = [10, 20, 30, 40]

y = x

Note: No separate memory will be allocated for y

Cloning / Copy: Making a copy

Example x = [10, 20, 30, 40]

y = x[:] <=> y = x.copy()

x[1] = 99

print(x)

print(y)

Note: Changes made in one list will not reflect other

List
Exercise

1. To find the maximum & minimum item in a list of items

2. Implement Bubble sort

3. To know how many times an element occurred in the list

4. To create employee list and search for the particular employee

List
To find the common items

#To find the common item in two lists

l1 = ["Thomas", "Richard", "Purdie", "Chris"]

l2 = ["Ram", "Amar", "Anthony", "Richard"]

#Covert them into sets

s1 = set(l1)

s2 = set(l2)

#Filter intersection of two sets

s3 = s1.intersection(s2)

#Convert back into the list

common = list(s3)

print(common)

List
Nested List

#To create a list with another list as element

list = [10, 20, 30, [80, 90]]

print(list)

List
List Comprehensions

Example-1: Create a list with squares of integers from 1 to 10

#Version-1

squares = []

for x in range(1, 11):

 squares.append(x ** 2)

print(squares)

#Version-2

squares = []

squares = [x ** 2 for x in range(1, 11)]

print(squares)

 List comprehensions represent creation of new lists from an iterable object(list, set,

 tuple, dictionary or range) that satisfies a given condition

List
List Comprehensions

Example-2: Get squares of integers from 1 to 10 and take only the even numbers from the
result

even_squares = [x ** 2 for x in range(1, 11) if x % 2 == 0]

print(even_squares)

 List comprehensions represent creation of new lists from an iterable object(list, set,

 tuple, dictionary or range) that satisfies a given condition

List
List Comprehensions

Example-3: #Adding the elements of two list one by one

#Example-1

x = [10, 20, 30]

y = [1, 2, 3, 4]

lst = []

#Version-1

for i in x:

 for j in y:

 lst.append(i + j)

#Version-2

lst = [i + j for i in x for j in y]

#Example-2

lst = [i + j for i in "ABC" for j in "DE"]

print(lst)

 List comprehensions represent creation of new lists from an iterable object(list, set,

 tuple, dictionary or range) that satisfies a given condition

Tuple

Tuple
Introduction

 A tuple is similar to list but it is immutable

Tuple
Creating Tuples

To create empty tuple

tup1 = ()

Tuple with one item

tup1 = (10,)

Tuple with different dtypes

tup3 = (10, 20, 1.1, 2.3, "Ram", 'M')

Tuple with no braces

t4 = 10, 20, 30, 40

Create tuple from the list

list = [10, 1.2, "Ram", 'M']

t5 = tuple(list)

Create tuple from range

t6 = tuple(range(4, 10, 2))

Tuple
Accessing Tuples

 Accessing items in the tuple can be done by indexing or slicing method, similar to
that of list

Tuple
Basic Operations On Tuples

s = (10, "Ram", 10, 20, 30, 40, 50)

To find the length of the tuple

print(len(s))

Repetition operator

fee = (25.000,) * 4
print(fee)

Concatenate the tuples using *

ns = s + fee
print(ns)

Membership

name = "Ram"
print(name in s)

Repetition

t1 = (1, 2, 3)
t2 = t1 * 3
print(t2)

Tuple
Functions To Process Tuples

len() len(tpl) Returns the number of elements in the tuple

min() min(tpl) Returns the smallest element in the tuple

max() max() Returns the biggest element in the tuple

count() tpl.count(x) Returns how many times the element ‘x’ is found in the tuple

index() tpl.index(x) Returns the first occurrence of the element ‘x’ in tpl.

Raises ValueError if ‘x’ is not found in the tuple

sorted() sorted(tpl) Sorts the elements of the tuple into ascending order.

sorted(tpl, reverse=True) will sort in reverse order

Tuple
Exercise

1. To accept elements in the form of a a tuple and display thier sum and average

2. To find the first occurrence of an element in a tuple

3. To sort a tuple with nested tuples

4. To insert a new item into a tuple at a specified location

5. To modify or replace an existing item of a tuple with new item

6. To delete an element from a particular position in the tuple

THANK YOU

Dictionaries

Team Emertxe

Dictionaries
Introduction

Group of items arranged in the form of key-value pair

Example

d = {"Name": "Ram", "ID": 102, "Salary": 10000}

Program

#Print the entire dictionary

print(d)

#Print only the keys

print("Keys in dic: ", d.keys())

#Print only values

print("Values: ", d.values())

#Print both keys and value pairs as tuples

print(d.items())

Dictionaries
Operations

d = {"Name": "Ram", "ID": 102, "Salary": 10000}

1. To get the no. of pairs in the Dictionary n = len(d)

2. To modify the existing value d[salary] = 15000

3. To insert new key:value pair d["Dept"] = "Finance"

4. To delete the key:value pair del d["ID"]

5. To check whether the key is present in
dictionary

"Dept" in d

 - Returns True, if it is present

6. We can use any datatype fro values, but keys should obey the rules

R1: Keys should be unique

 Ex: emp = {10: "Ram", 20: "Ravi", 10: "Rahim"}

 - Old value will be overwritten,

 emp = {10: "Rahim", 20: "Ravi"}

R2: Keys should be immutable type. Use numbers, strings or tuples

 If mutable keys are used, will get 'TypeError'

Dictionaries
Methods

clear() d.clear() Removes all key-value pairs from the d

copy() d1 = d.copy() Copies all items from ‘d’ into a new dictionary ‘d1’

fromkeys() d.fromkeyss(s, [,v]) Create a new dictionary with keys from sequence ‘s’ and
values all set to ‘v’

get() d.get(k, [,v]) Returns the value associated with key ‘k’.
If key is not found, it returns ‘v’

items() d.items() Returns an object that contains key-value pairs of ‘d’.
The pairs are stored as tuples in the object

keys() d.keys() Returns a sequence of keys from the dictionary ‘d’

values() d.values() Returns a sequence of values from the dictionary ‘d’

update() d.update(x) Adds all elements from dictionary ‘x’ to ‘d’

pop() d.pop(k, [,v]) Removes the key ‘k’ and its value.

Dictionaries
Programs

To create the dictionary with employee details

d = {"Name": "Ram", "ID": 1023, "Salary": 10000}

#Print the entire dictionary
print(d)

#Print only the keys
print("Keys in dic: ", d.keys())

#Print only values
print("Values: ", d.values())

#Print both keys and value pairs as tuples
print(d.items())

Dictionaries
Programs

#To create a dictionary from the keyboard and display the items

x = {}

print("Enter 'n' value: ", end='')

n = int(input())

for i in range(n):

 print("Enter the key: ", end='')

 k = input()

 print("Enter the value: ", end='')

 v = int(input())

 x.update({k: v})

print(x)

Dictionaries
Using for loop with Dictionaries

Method-1
for k in colors:
 print(k)

Method-2
for k in colors:
 print(colors[k])

Method-3
for k, v in colors.items():
 print("key = {}\nValue = {}". format(k, v))

Dictionaries
Sorting Dictionaries: Exercise

To sort the elements of a dictionary based on akey or value

Dictionaries
Converting Lists into Dictionary

Two step procedure

 - zip()

 - dict()

#To convert list into dictionary

countries = ["India", "USA"]

cities = ["New Delhi", "Washington"]

#Make a dictionary

z = zip(countries, cities)

d = dict(z)

print(d)

Dictionaries
Converting strings into dictionary

str = "Ram=23,Ganesh=20"

#Create the empty list

lst = []

for x in str.split(','):

 y = x.split('=')

 lst.append(y)

#Convert into dictionary

d = dict(lst)

print(d)

Dictionaries
Passing dictionary to function

By specifying the name of the dictionary as the parameter, we can pass the dictionary to the
function.

Example

d = {10: "Ram"}

display(d)

Dictionaries
Ordered Dictionaries

from collections import OrderedDict

Example

d = {10: "Ram"}

display(d)

Program:

#To create the ordered dictionary
from collections import OrderedDict

#Create empty dictionary
d = OrderedDict()

d[10] = 'A'
d[11] = 'B'
d[12] = 'C'
d[13] = 'D'

print(d)

THANK YOU

Classes And Objects

Team Emertxe

Creation of Class

Creation of Class
General Format

 Class is a model or plan to create the objects

 Class contains,

 Attributes: Represented by variables

 Actions : Performed on methods

 Syntax of defining the class,

Syntax Example

class Classname(object):

 """docstrings"""

 Attributes

 def __init__(self):

 def method1():

 def method2():

class Student:

 """The below block defines attributes"""

 def __init__(self):

 self.name = "Ram"

 self.age = 21

 self.marks = 89.75

 """The below block defines a method"""

 def putdata(self):

 print("Name: ", self.name)

 print("Age: ", self.age)

 print("Marks: ", self.marks)

Creation of Class
Program

#To define the Student calss and create an Object to it.

#Class Definition
class Student:
 #Special method called constructor
 def __init__(self):
 self.name = "Ram"
 self.age = 21
 self.marks = 75.90

 #This is an instance method
 def putdata(self):
 print("Name: ", self.name)
 print("Age: ", self.age)
 print("Marks: ", self.marks)

#Create an instance to the student class
s = Student()

#Call the method using an Object
s.putdata()

The Self Variable

The Self Variable

 ‘Self’ is the default variable that contains the memory address of the instance of the
current class

s1 = Student()  s1 contains the memory address of the instance

 This memory address is internally and by default passed to
‘self’ variable

Usage-1:

def __init__(self):
 The ‘self’ variable is used as first parameter in the

constructor

Usage-2:

def putdata(self):

 The ‘self’ variable is used as first parameter in the
instance methods

Constructor

Constructor
Constructor with NO parameter

 Constructors are used to create and initialize the 'Instance Variables'

 Constructor will be called only once i.e at the time of creating the objects

 s = Student()

Example def __init__(self):

 self.name = "Ram"

 self.marks = 99

Constructor
Constructor with parameter

Example def __init__(self, n = "", m = 0):

 self.name = n

 self.marks = m

Instance-1 s = Student()

Will initialize the instance variables with default parameters

Instance-2 s = Student("Ram", 99)

Will initialize the instance variables with parameters passed

Constructor
Program

#To create Student class with a constructor having more than one parameter

class Student:

 #Constructor definition

 def __init__(self, n = "", m = 0):

 self.name = n

 self.marks = m

 #Instance method

 def putdata(self):

 print("Name: ", self.name)

 print("Marks: ", self.marks)

#Constructor called without any parameters

s = Student()

s.putdata()

#Constructor called with parameters

s = Student("Ram", 99)

s.putdata()

Types of Variables

Types Of Variables

 Instance variables

 Class / Static variables

Types Of Variables
Instance Variables

 Variables whose separate copy is created for every instance/object

 These are defined and init using the constructor with 'self' parameter

 Accessing the instance variables from outside the class,

 instancename.variable

class Sample:

 def __init__(self):

 self.x = 10

 def modify(self):

 self.x += 1

#Create an objects
s1 = Sample()
s2 = Sample()

print("s1.x: ", s1.x)
print("s2.x: ", s2.x)

s1.modify()
print("s1.x: ", s1.x)
print("s2.x: ", s2.x)

Types Of Variables
Class Variables

 Single copy is created for all instances

 Accessing class vars are possible only by 'class methods'

 Accessing class vars from outside the class,

 classname.variable

class Sample:

 #Define class var here

 x = 10

 @classmethod

 def modify(cls):

 cls.x += 1

#Create an objects
s1 = Sample()
s2 = Sample()

print("s1.x: ", s1.x)
print("s2.x: ", s2.x)

s1.modify()
print("s1.x: ", s1.x)
print("s2.x: ", s2.x)

Namespaces

Namespaces
Introduction

 Namespace represents the memory block where names are mapped/linked to objects

 Types:

 Class namespace

 - The names are mapped to class variables

 Instance namespace

 - The names are mapped to instance variables

Namespaces
Class Namespace

#To understand class namespace

#Create the class

class Student:

 #Create class var

 n = 10

#Access class var in class namespace

print(Student.n)

#Modify in class namespace

Student.n += 1

#Access class var in class namespace

print(Student.n)

#Access class var in all instances

s1 = Student()

s2 = Student()

#Access class var in instance namespace

print("s1.n: ", s1.n)

print("s2.n: ", s2.n)

10n

Class Namespace

10n 10n

Instance NamespaceInstance Namespace

11n

Class Namespace

11n 11n

Instance NamespaceInstance Namespace

Before modifyng class variable ‘n’

After modifyng class variable ‘n’

If class vars are modified in class namespace, then it reflects to all instances

Namespaces
Instance Namespace

#To understand class namespace

#Create the class

class Student:

 #Create class var

 n = 10

s1 = Student()

s2 = Student()

#Modify the class var in instance namespace

s1.n += 1

#Access class var in instance namespace

print("s1.n: ", s1.n)

print("s2.n: ", s2.n)

10n

Class Namespace

10n 10n

Instance NamespaceInstance Namespace

10n

Class Namespace

11n 10n

Instance NamespaceInstance Namespace

Before modifyng class variable ‘n’

After modifyng class variable ‘n’

If class vars are modified in instance namespace, then it reflects only to
that instance

Types of Methods

Types of Methods

 Types:

 Instance Methods

 - Accessor

 - Mutator

 Class Methods

 Static Methods

Types of Methods
Instance Methods

● Acts upon the instance variables of that class

● Invoked by instance_name.method_name()

#To understanf the instance methods

class Student:

 #Constructor definition

 def __init__(self, n = "", m = 0):

 self.name = n

 self.marks = m

 #Instance method

 def putdata(self):

 print("Name: ", self.name)

 print("Marks: ", self.marks)

#Constructor called without any parameters

s = Student()

s.putdata()

#Constructor called with parameters

s = Student("Ram", 99)

s.putdata()

Types of Methods
Instance Methods: Accessor + Mutator

#To understand accessor and mutator

#Create the class

class Student:

 #Define mutator

 def setName(self, name):

 self.name = name

 #Define accessor

 def getName(self):

 return self.name

#Create an objects

s = Student()

#Set the name

s.setName("Ram")

#Print the name

print("Name: ", s.getName())

Accessor Mutator

● Methods just reads the instance variables,
will not modify it

● Generally written in the form: getXXXX()

● Also called getter methods

● Not only reads the data but also modifies
it

● Generally wriiten in the form: setXXXX()

● Also called setter methods

Types of Methods
Class Methods

#To understand the class methods

class Bird:

 #Define the class var here

 wings = 2

 #Define the class method

 @classmethod

 def fly(cls, name):

 print("{} flies with {} wings" . format(name, cls.wings))

#Call

Bird.fly("Sparrow")

Bird.fly("Pigeon")

● This methods acts on class level

● Acts on class variables only

● Written using @classmethod decorator

● First param is 'cls', followed by any params

● Accessed by classname.method()

Types of Methods
Static Methods

#To Understand static method

class Sample:

 #Define class vars

 n = 0

 #Define the constructor

 def __init__(self):

 Sample.n = Sample.n + 1

 #Define the static method

 @staticmethod

 def putdata():

 print("No. of instances created: ", Sample.n)

#Create 3 objects

s1 = Sample()

s2 = Sample()

s3 = Sample()

#Class static method

Sample.putdata()

● Needed, when the processing is at the class level but we need not involve the class or
instances

● Examples:

- Setting the environmental variables

- Counting the number of instances of the class

● Static methods are written using the decorator @staticmethod

● Static methods are called in the form classname.method()

Passing Members

Passing Members

● It is possible to pass the members(attributes / methods) of one class to another

● Example:

e = Emp()

● After creating the instance, pass this to another class 'Myclass'

● Myclass.mymethod(e)

- mymethod is static

Passing Members
Example

#To understand how members of one class can be passed to another

#Define the class

class Emp:

 def __init__(self, name, salary):

 self.name = name

 self.salary = salary

 def putdata(self):

 print("Name: ", self.name)

 print("Salary: ", self.salary)

#Create Object

e = Emp("Ram", 20000)

#Call static method of Myclass and pass e

Myclass.mymethod(e)

#Define another class

class Myclass:

 @staticmethod

 def mymethod(e):

 e.salary += 1000

 e.putdata()

Passing Members
Exercise

1. To calculate the power value of a number with the help of a static method

Inner Class

Inner Class
Introduction

● Creating class B inside Class A is called nested class or Inner class

● Example:

 Person's Data like,

 - Name: Single value

 - Age: Single Value

 - DoB: Multiple values, hence separate class is needed

Inner Class
Program: Version-1

#To understand inner class

class Person:

 def __init__(self):

 self.name = "Ram"

 self.db = self.Dob()

 def display(self):

 print("Name: ", self.name)

 #Define an inner class

 class Dob:

 def __init__(self):

 self.dd = 10

 self.mm = 2

 self.yy = 2002

 def display(self):

 print("DoB: {}/{}/{}" . format(self.dd,
self.mm, self.yy))

#Creating Object

p = Person()

p.display()

#Create inner class object

i = p.db

i.display()

Inner Class
Program: Version-2

#To understand inner class

class Person:

 def __init__(self):

 self.name = "Ram"

 self.db = self.Dob()

 def display(self):

 print("Name: ", self.name)

 #Define an inner class

 class Dob:

 def __init__(self):

 self.dd = 10

 self.mm = 2

 self.yy = 2002

 def display(self):

 print("DoB: {}/{}/{}" . format(self.dd,
self.mm, self.yy))

#Creating Object

p = Person()

p.display()

#Create inner class object

i = Person().Dob()

i.display()

THANK YOU

Inheritance And
Polymorphism
Team Emertxe

Significance of Inheritance

Significance Of Inheritance

Example-1: teacher.py

A Python program to create Teacher class and store it into teacher.py module.

This is Teacher class. save this code in teaccher.py file
class Teacher:
 def setid(self, id):
 self.id = id

 def getid(self):
 return self.id

 def setname(self, name):
 self.name = name

 def getname(self):
 return self.name

 def setaddress(self, address):
 self.address = address

 def getaddress(self):
 return self.address

 def setsalary(self, salary):
 self.salary = salary

 def getsalary(self):
 return self.salary

When the programmer wants to use this Teacher class that is available in teachers.py file,

he can simply import this class into his program and use it

Significance Of Inheritance
Program

using Teacher class from teacher important Teacher

from teacher import Teacher

create instance

t = Teacher()

store data into the instance

t.setid(10)

t.setname("Ram")

t.setaddress('HNO-10, Raj gardens, Delhi')

t.setsalary(25000.50)

retrive data from instance and display

print('id= ', t.getid())

print('name= ', t.getname())

print('address= ', t.getaddress())

print('salary= ', t.getsalary())

Significance Of Inheritance

teacher.py

programmer1

programmer2

Significance Of Inheritance

Example-2: student.py

A Python program to create sudent class and store it into student.py module

class Student:
 def setid(self, id):
 self.id = id

 def getid(self):
 return self.id

 def setname(self, name):
 self.name = name

 def getname(self):
 return self.name

 def setaddress(self, address):
 self.address = address

 def getaddress(self):
 return self.address

 def setmarks(self, marks):
 self.marks = marks

 def getmarks(self):
 return self.marks

Now, the second programmer who created this Student class and saved it as student.py

can use it whenever he needs.

Significance Of Inheritance
Program

using student class from student import student

from student import Student

create instance

s = Student()

store data into the instance

s.setid(100)

s.setname('Rakesh')

s.setaddress('HNO-22, Ameerpet, Hyderabad')

s.setmarks(970)

#Print the data

print("ID: ", s.getid())

print("Name: ", s.getname())

print("Address: ", s.getaddress())

print("Marks: ", s.getmarks())

Significance Of Inheritance
Comparision

class Teacher:

 def setid(self, id):

 self.id = id

 def getid(self):

 return self.id

 def setname(self, name):

 self.name = name

 def getname(self):

 return self.name

 def setaddress(self, address):

 self.address = address

 def getaddress(self):

 return self.address

 def setsalary(self, salary):

 self.salary = salary

 def getsalary(self):

 return self.salary

 class Student:
 def setid(self, id):
 self.id = id

 def getid(self):
 return self.id

 def setname(self, name):
 self.name = name

 def getname(self):
 return self.name

 def setaddress(self, address):
 self.address = address

 def getaddress(self):
 return self.address

 def setmarks(self, marks):
 self.marks = marks

 def getmarks(self):
 return self.marks

By comparing both the codes, we can observe 75% of the code is common

Significance Of Inheritance

from teacher import Teacher

class Student(Teacher):

 def setmarks(self, marks):

 self.marks = marks

 def getmarks(self):

 return self.marks

create instance

s = Student()

store data into the instance

s.setid(100)

s.setname('Rakesh')

s.setaddress('HNO-22, Ameerpet, Hyderabad')

s.setmarks(970)

#Print the data

print("ID: ", s.getid())

print("Name: ", s.getname())

print("Address: ", s.getaddress())

print("Marks: ", s.getmarks())

Syntax:

class Subclass(Baseclass):

Significance Of Inheritance
Advantages

 Smaller and easier to develop

 Productivity increases

marks

setmarks(), getmarks()

id

name

address

salary

setid(), getid()

setname(), getname()

setaddress(), getaddress()

setsalary(), getsalary()

Student class Object

Copy of Teacher class object

 s

Inheritance
Definition

 Deriving the new classes from the existing classes such that the new classes inherit all

the members of the existing classes is called Inheritance

 Syntax:

class Subclass(Baseclass):

Constructors in Inheritance

Constructors in Inheritance
Example

 Like variables & Methods, the constructors in the super class are also available in the
sub-class

class Father:

 def __init__(self):

 self.property = 800000.00

 def display_property(self):

 print('Father\'s property= ',self.property)

#Create the instance

s = Son()

s.display_property()

class Son(Father):
 pass # we do not want to write anything in the sub class

Overriding Super Class
Constructors and Methods

Overriding super class
Constructors + Methods

 Constructor Overriding

- The sub-class constructor is replacing the super class constructor

 Method Overriding

- The sub-class method is replacing the super class method

Example

overriding the base class constructor and method in sub class
class Father:
 def __init__(self):
 self.property = 800000.00

 def display_property(self):
 print('Father\'s property= ', self.property)

class Son(Father):
 def __init__(self):
 self.property = 200000.00

 def display_property(self):
 print('child\'s property= ', self.property)

create sub class instance and display father's property
s = Son()
s.display_property()

The Super() Method

The super() Method

 super() is a built-in method which is useful to call the super class constructor or Methods

Examples

#Call super class constructors

super().__init__()

#Call super class constructors and pass arguments

super().__init__(arguments)

#Call super class method

super().method()

The super() Method
Example

Example-1

acceessing base class constructor in sub class

class Father:

 def __init__(self, property=0):

 self.property = property

 def display_property(self):

 print('Father\'s property= ', self.property)

class Son(Father):

 def __init__(self, property1=0, property=0):

 super().__init__(property)

 self.property1 = property1

 def display_property(self):

 print('Total property of child= ', self.property1 + self.property)

create sub class instance and display father's property

s = Son(200000.00, 800000.00)

s.display_property()

The super() Method
Example

Example-2

Accessing base class constructor and method in the sub class

class Square:

 def __init__(self, x):

 self.x = x

 def area(self):

 print('Area of square= ',self.x * self.x)

class Rectangle(Square):

 def __init__(self, x, y):

 super().__init__(x)

 self.y = y

 def area(self):

 super().area()

 print('Area of rectangle= ',self.x * self.y)

find areas of square and rectangle

a, b = [float(x) for x in input("Enter two measurements: ").split()]

r = Rectangle(a,b)

r.area()

Types Of Inheritance

Types of Inheritance
Single

Bank

AndhraBank StateBank

A Python program showing single inhertiance in which two sub classes are derived from a
single base class.

single inhertiance
class Bank(object):
 cash = 100000000

 @classmethod
 def available_cash(cls):
 print(cls.cash)

class StateBank(Bank):
 cash = 200000000

 @classmethod
 def available_cash(cls):
 print(cls.cash + Bank.cash)

class AndhraBank(Bank):
 pass

a = AndhraBank()
a.available_cash()

s = StateBank()
s.available_cash()

Types of Inheritance
Multiple

Father Mother

A Python program to implement multiple inhertiance using two base classes

#multiple inheritance
class Father:
 def height(self):
 print('Height is 6.0 foot')

class child(Father, Mother):
 pass

class Mother:
 def color(self):
 print('color is brown')

c = child()
print('child\'s inherited qualities: ')
c.height()
c.color()

Child

Syntax:

class Subclass(BaseClass1, BaseClass2, ...):

Multiple Inheritance
Problems in MI

A Python program to prove that only one class constructor is available to sub class in
multiple inheritance.

when super classes have constructors

class A(object):
 def __init__(self):
 self.a = 'a'
 print(self.a)

class B(object):
 def __init__(self):
 self.b = 'b'
 print(self.b)

class C(A, B):
 def __init__(self):
 self.c = 'c'
 print(self.c)
 super().__init__()

access the super class instance vars from C
o = C() # o is object of class C

Multiple Inheritance
Solutions

#A Python program to access all the instance variables of both the base classes in

multiple inheritance.

when super classes have constructors - v2.0

class A(object):
 def __init__(self):
 self.a = 'a'
 print(self.a)
 super().__init__()

class B(object):
 def __init__(self):
 self.b = 'b'
 print(self.b)
 super().__init__()

class C(A,B):
 def __init__(self):
 self.c = 'c'
 print(self.c)
 super().__init__()

access the super class instance vars from C

o = C() # o is object class C

Object

A B

C

MRO(Method Resolution Operator)

MRO

 In Multiple Inheritance, any specified attribute or method is searched first in the current
class. If not found, the search continues into parent classes in depth-first left to right
fasion without searching for the same class twice

1. The first principle is to search for the sub classes before going for its base classes.

Thus if class B is inherited from A, it will search B first and then goes to A

2. The second principle is that when a class is inherited from several classes, it searches
in the order from left to right in the base class.

Example: class C(A, B), then first it will search in A and then in B

3. The third principle is that it will not visit any class more than once. That means a class

in the inheritance hierarchy is traversed only once exactly

MRO

Object

A B C

X Y

P

MRO
Program

A Python program to understand the order of execution of methods in several base classes
according to MRO.

class A(object):
 def method(self):
 print('A class method')
 super().method()

class B(object):
 def method(self):
 print('B class method')
 super().method()
class C(object):
 def method(self):
 print('C class method')

class X(A, B):
 def method(self):
 print('X class method')
 super().method()
class Y(A, B):
 def method(self):
 print('Y class method')
 super().method()

class P(X,Y,C):
 def method(self):
 print('P class method')
 super().method()

P = P()
P.method()

P.mro(): Returns sequence of execution of classes

Polymorphism

Polymorphism

Polymorphism
Introduction

 Variable, Object or Method exhibits different behavior in different contexts called

 Polymorphism

 Python has built-in Polymorphism

Polymorphism
Duck Typing Philosophy

 Datatype of the variables is not explicitly declared

 type(): To check the type of variable or object

Example-1

x = 5
print(type(x))

<class ‘int’>

Example-2 x = “Hello”
print(type(x))

<class ‘str’>

Conclusion

1. Python’s type system is strong because every variable or object has a type that we can
check with the type() function

2. Python’s type system is ‘dynamic’ since the type of a variable is not explicitly declared,
but it changes with the content being stored

Polymorphism
Duck Typing Philosophy: Program

A Python program to invoke a method on an object without knowing the type (or class) of
the object.

duck typing example

Duck class contains talk() method
class Duck:
 def talk(self):
 print('Quack, quack!')

#Human class contains talk() method
class Human:
 def talk(self):
 print('Hello, hi!')

this method accepts an object and calls talk() method
def call_talk(obj):
 obj.talk()

call call_talk() method pass an object
depending on type of object, talk() method is executed
x = Duck()

call_talk(x)
x = Human()
call_talk(x)

During runtime, if it is found that method does not belong to that object,
there will be an error called ‘AttributeError’

Polymorphism
Attribute Error: Overcoming

this method accepts an object and calls talk() method
def call_talk(obj):

 if hasattr(obj, 'talk'):

 obj.talk()

 elif hasattr(obj, 'bark'):

 obj.bark()

 else:

 print('Wrong object passed...')

During runtime, if it is found that method does not belong to that object,
there will be an error called ‘AttributeError’

Operator Overloading

Operator Overloading
Example-1

A Python program to use addition operator to act on different types of objects.

overloading the + operator

using + on integers to add them

print(10+15)

#using + on strings to concatenate them

s1 = "Red"

s2 = "Fort"

print(s1+s2)

#using + on lists to make a single list

a = [10, 20, 30]

b = [5, 15, -10]

print(a+b)

‘+’ operator is overloaded and thus exhibits polymorphism

Operator Overloading
Example-2

Error #Correction

using + operator on objects

class BookX:

 def __init__(self, pages):

 self.pages = pages

class BookY:

 def __init__(self, pages):

 self.pages = pages

b1 = BookX(100)

b2 = BookY(150)

print('Total pages = ', b1 + b2)

overloading + operator to act on objects

class BookX:

 def __init__(self, pages):

 self.pages = pages

 def __add__(self, other):

 return self.pages+other.pages

class BookY:

 def __init__(self, pages):

 self.pages = pages

b1 = BookX(100)

b2 = BookY(150)

print('Total pages= ', b1+b2)

def __add__(self, other):

Operator Overloading
Example-3

#A Python program to overload greater than (>) operator to make it act on class objects.

overloading > operator

class Ramayan:

 def __init__(self, pages):

 self.pages = pages

 def __gt__(self, other):

 return self.pages > other.pages

class Mahabharat:

 def __init__(self, pages):

 self.pages = pages

b1 = Ramayan(1000)

b2 = Mahabharat(1500)

if(b1 > b2):

 print('Ramayan has more pages')

else:

 print('Mahabharat has more pages')

def __gt__(self, other):

Method Overloading

Operator Overloading
Example-1

A Python program to show method overloading to find sum of two or three numbers.

method overloading

class Myclass:

 def sum(self, a=None, b=None, c=None):

 if a!=None and b!=None and c!=None:

 print('Sum of three= ', a + b + c)

 elif a!=None and b!=None:

 print('Sum of two= ', a + b)

 else:

 print('Please enter two or three arguments')

call sum() using object

m = Myclass()

m.sum(10, 15, 20)

m.sum(10.5, 25.55)

m.sum(100)

If a method is written such that it can perform more than one task, it is
called method overloading

Method Overriding

Operator Overriding
Example-1

A Python program to override the super class method in sub class.

method overriding

import math

class Square:

 def area(self, x):

 print('Square area= %.4f' % (x * x))

class Circle(Square):

 def area(self, x):

 print('Circle area= %.4f' % (math.pi *x * x))

call area() using sub class object

c = Circle()

c.area(15)

If a method written in sub class overrides the same method in super class,
then it is called method overriding

Method overriding already discussed in Constructor & Method Overridings

THANK YOU

Abstract Classes And
Interfaces
Team Emertxe

Introduction

Introduction

Example:

To understand that Myclass method is shared by all objects

class Myclass:

 def calculate(self, x):

 print("Square: ", x * x)

#All objects share same calculate() method

obj1 = Myclass()

obj1.calculate(2)

obj2 = Myclass()

obj2.calculate(3)

obj3 = Myclass()

obj3.calculate(4)

Question

 What If?

 Object-1 wants to calculate square value

 Object-2 wants to calculate square root

 Object-3 wants to calculate Cube

Solution-1

 Define, three methods in the same class

 calculate_square()

 calculate_sqrt()

 calculate_cube()

 Disadvantage:

 All three methods are available to all the objects which is not advisable

Solution-2

calculate(x):
no body

calculate(x):
square of x

calculate(x):
sqrt of x

calculate(x):
cube of x

Obj1 Obj2 Obj3

Myclass

Sub1 Sub2 Sub3

Abstract Method and Class

Abstract Method & Class

 Abstract Method

 - Is the method whose action is redefined in sub classes as per the requirements

 of the objects

 - Use decorator @abstractmethod to mark it as abstract method

 - Are written without body

 Abstract Class

 - Is a class generally contains some abstract methods

 - PVM cannot create objects to abstract class, since memory needed will not be

 known in advance

 - Since all abstract classes should be derived from the meta class ABC which belongs to
abc(abstract base class) module, we need to import this module

 - To import abstract class, use

 - from abc import ABC, abstractmethod

 OR

 - from abc import *

Program-1

#To create abstract class and sub classes which implement the abstract method of the
abstract class

from abc import ABC, abstractmethod

class Myclass(ABC):
 @abstractmethod
 def calculate(self, x):
 pass

#Sub class-1
class Sub1(Myclass):
 def calculate(self, x):
 print("Square: ", x * x)

Obj1 = Sub1()
Obj1.calculate(2)

Obj2 = Sub2()
Obj2.calculate(16)

Obj3 = Sub3()
Obj2.calculate(3)

#Sub class-2
import math
class Sub2(Myclass):
 def calculate(self, x):
 print("Square root: ", math.sqrt(x))

#Sub class-3
class Sub3(Myclass):
 def calculate(self, x):
 print("Cube: ", x * x * x)

Example-2

 Maruthi, Santro, Benz are all objects of class Car

Registration no. - All cars will have reg. no.

- Create var for it

Fuel Tank - All cars will have common fule tank

- Action: Open, Fill, Close

Steering - All cars will not have common steering
 say, Maruthi uses- Manual steering
 Santro uses - Power steering
- So define this as an Abstract Method

Brakes - Maruthi uses hydraulic brakes
- Santro uses gas brakes
- So define this as an Abstract Method

Program-2

#Define an absract class

from abc import *

class Car(ABC):

 def __init__(self, reg_no):

 self.reg_no = reg_no

 def opentank(self):

 print("Fill the fuel for car with reg_no: ",
self.reg_no)

 @abstractmethod

 def steering(self):

 pass

 @abstractmethod

 def braking(self):

 pass

#Define the Maruthi class

from abstract import Car

class Maruthi(Car):

 def steering(self):

 print("Maruthi uses Manual steering")

 def braking(self):

 print("Maruthi uses hydraulic braking system")

#Create the objects

Obj = Maruthi(123)

Obj.opentank()

Obj.steering()

Obj.braking()

Interfaces

Interfaces

 Abstract classes contains both,

 - Abstract methods

 - Concrete Methods

 Interfaces is also an Abstract class, but contains only

 - Abstract methods

 Plus point of Interface.

 - Every sub-class may provide its own implementation for the abstract methods

Interfaces
Program-1

from abc import *

class Myclass(ABC):
 @abstractmethod
 def connect(self):
 pass

 @abstractmethod
 def disconnect(self):
 pass

#Define Database
class Database:

 str = input("Enter the database name: ")

 #Covert the string into the class name
 classname = globals()[str]

 #create an object
 x = classname()

 #Call methods
 x.connect()
 x.disconnect()

#Sub-Class:1
class Oracle(Myclass):
 def connect(self):
 print("Connecting to oracle database...")

 def disconnect(self):
 print("Disconnecting from oracle
database...")

#Sub-Class:2
class Sybase(Myclass):
 def connect(self):
 print("Connecting to sybase database...")

 def disconnect(self):
 print("Disconnecting from sybase
database...")

Interfaces
Program-2

from abc import *

class Myclass(ABC):
 @abstractmethod
 def putdata(self, text):
 pass

 @abstractmethod
 def disconnect(self):
 pass

#Define Printer
class Printer:

 str = input("Enter the printer name: ")

 #Covert the string into the class name
 classname = globals()[str]

 #create an object
 x = classname()

 #Call methods
 x.putdata("Sending to printer")
 x.disconnect()

#Sub-Class:1
class IBM(Myclass):
 def putdata(self, text):
 print(text)

 def disconnect(self):
 print("Disconnecting from IBM printer...")

#Sub-Class:2
class Epson(Myclass):
 def putdata(self, text):
 print(text)

 def disconnect(self):
 print("Disconnecting from Epson printer...")

THANK YOU

Exceptions

Team Emertxe

Introduction

Errors

 Categories of Errors

 Compile-time

 Runtime

 Logical

Errors
Compile-Time

What? These are syntactical errors found in the code, due to which program
fails to compile

Example Missing a colon in the statements llike if, while, for, def etc

Program Output

x = 1

if x == 1
 print("Colon missing")

py 1.0_compile_time_error.py
 File "1.0_compile_time_error.py", line 5
 if x == 1
 ^
SyntaxError: invalid syntax

x = 1

#Indentation Error
if x == 1:
 print("Hai")
 print("Hello")

py 1.1_compile_time_error.py
 File "1.1_compile_time_error.py", line 8
 print("Hello")
 ^
IndentationError: unexpected indent

Errors
Runtime - 1

What? When PVM cannot execute the byte code, it flags runtime error

Example Insufficient memory to store something or inability of the PVM to
execute some statement come under runtime errors

Program Output

def combine(a, b):
 print(a + b)

#Call the combine function
combine("Hai", 25)

py 2.0_runtime_errors.py

Traceback (most recent call last):

 File "2.0_runtime_errors.py", line 7, in <module>

 combine("Hai", 25)

 File "2.0_runtime_errors.py", line 4, in combine

 print(a + b)

TypeError: can only concatenate str (not "int") to str

"""
Conclusion:

1. Compiler will not check the datatypes.
2.Type checking is done by PVM during run-time.
"""

Errors
Runtime - 2

What? When PVM cannot execute the byte code, it flags runtime error

Example Insufficient memory to store something or inability of the PVM to
execute some statement come under runtime errors

Program Output

#Accessing the item beyond the array
bounds

lst = ["A", "B", "C"]
print(lst[3])

py 2.1_runtime_errors.py

Traceback (most recent call last):

 File "2.1_runtime_errors.py", line 5, in <module>

 print(lst[3])

IndexError: list index out of range

Errors
Logical-1

What? These errors depicts flaws in the logic of the program

Example Usage of wrong formulas

Program Output

def increment(sal):

 sal = sal * 15 / 100

 return sal

#Call the increment()

sal = increment(5000.00)

print("New Salary: %.2f" % sal)

py 3.0_logical_errors.py

New Salary: 750.00

Errors
Logical-2

What? These errors depicts flaws in the logic of the program

Example Usage of wrong formulas

Program Output

#1. Open the file

f = open("myfile", "w")

#Accept a, b, store the result of a/b into the file

a, b = [int(x) for x in input("Enter two number: ").split()]

c = a / b

#Write the result into the file

f.write("Writing %d into myfile" % c)

#Close the file

f.close()

print("File closed")

py 4_effect_of_exception.py

Enter two number: 10 0

Traceback (most recent call last):

 File "4_effect_of_exception.py", line 8, in
<module>

 c = a / b

ZeroDivisionError: division by zero

Errors
Common

 When there is an error in a program, due to its sudden termination, the following things
can be suspected

 The important data in the files or databases used in the program may be lost

 The software may be corrupted

 The program abruptly terminates giving error message to the user making the user
losing trust in the software

Exceptions
Introduction

 An exception is a runtime error which can be handled by the programmer

 The programmer can guess an error and he can do something to eliminate the harm caused by

that error called an ‘Exception’

BaseException

Exception

StandardError Warning

ArthmeticError

AssertionError

SyntaxError

TypeError

EOFError

RuntimeError

ImportError

NameError

DeprecationWarning

RuntimeWarning

ImportantWarning

Exceptions
Exception Handling

 The purpose of handling errors is to make program robust

Step-1 try:
 statements

#To handle the ZeroDivisionError Exception
try:
 f = open("myfile", "w")
 a, b = [int(x) for x in input("Enter two numbers: ").split()]
 c = a / b
 f.write("Writing %d into myfile" % c)

Step-2 except exeptionname:
 statements

except ZeroDivisionError:
 print("Divide by Zero Error")
 print("Don't enter zero as input")

Step-3 finally:
 statements

finally:
 f.close()
 print("Myfile closed")

Exceptions
Program

#To handle the ZeroDivisionError Exception

#An Exception handling Example

try:

 f = open("myfile", "w")

 a, b = [int(x) for x in input("Enter two numbers: ").split()]

 c = a / b

 f.write("Writing %d into myfile" % c)

except ZeroDivisionError:

 print("Divide by Zero Error")

 print("Don't enter zero as input")

finally:

 f.close()

 print("Myfile closed")

Output:

py 5_exception_handling.py

Enter two numbers: 10 0

Divide by Zero Error

Don't enter zero as input

Myfile closed

Exceptions
Exception Handling Syntax

try:
 statements

except Exception1:
 handler1

except Exception2:
 handler2

else:
 statements

finally:
 statements

Exceptions
Exception Handling: Noteworthy

 - A single try block can contain several except blocks.

 - Multiple except blocks can be used to handle multiple exceptions.

 - We cannot have except block without the try block.

 - We can write try block without any except block.

 - Else and finally are not compulsory.

 - When there is no exception, else block is executed after the try block.

 - Finally block is always executed.

Exceptions
Types: Program-1

#To handle the syntax error given by eval() function

#Example for Synatx error

try:

date = eval(input("Enter the date: "))

except SyntaxError:

print("Invalid Date")

else:

print("You entered: ", date)

Output:

Run-1:

Enter the date: 5, 12, 2018

You entered: (5, 12, 2018)

Run-2:

Enter the date: 5d, 12m, 2018y

Invalid Date

Exceptions
Types: Program-2

#To handle the IOError by open() function

#Example for IOError

try:

name = input("Enter the filename: ")

f = open(name, "r")

except IOError:

print("File not found: ", name)

else:

n = len(f.readlines())

print(name, "has", n, "Lines")

f.close()

If the entered file is not exists, it will raise an IOError

Exceptions
Types: Program-3

#Example for two exceptions

#A function to find the total and average of list elements

def avg(list):

tot = 0

for x in list:

tot += x

avg = tot / len(list)

return tot.avg

#Call avg() and pass the list

try:

t, a = avg([1, 2, 3, 4, 5, 'a'])

#t, a = avg([]) #Will give ZeroDivisionError

print("Total = {}, Average = {}". format(t, a))

except TypeError:

print("Type Error: Pls provide the numbers")

except ZeroDivisionError:

print("ZeroDivisionError, Pls do not give empty list")

Output:

Run-1:

Type Error: Pls provide the numbers

Run-2:

ZeroDivisionError, Pls do not give empty list

Exceptions
Except Block: Various formats

Format-1 except Exceptionclass:

Format-2 except Exceptionclass as obj:

Format-3 except (Exceptionclass1, Exceptionclass2, ...):

Format-4 except:

Exceptions
Types: Program-3A

#Example for two exceptions

#A function to find the total and average of list elements

def avg(list):

tot = 0

for x in list:

tot += x

avg = tot / len(list)

return tot.avg

#Call avg() and pass the list

try:

t, a = avg([1, 2, 3, 4, 5, 'a'])

#t, a = avg([]) #Will give ZeroDivisionError

print("Total = {}, Average = {}". format(t, a))

except (TypeError, ZeroDivisionError):

print("Type Error / ZeroDivisionError”)

Output:

Run-1:

Type Error / ZeroDivisionError

Run-2:

Type Error / ZeroDivisionError

Exceptions
The assert Statement

 It is useful to ensure that a given condition is True, It is not True, it raises

AssertionError.

 Syntax:

assert condition, message

Exceptions
The assert Statement: Programs

Program - 1 Program - 2

#Handling AssertionError

try:

 x = int(input("Enter the number between 5 and 10: "))

 assert x >= 5 and x <= 10

 print("The number entered: ", x)

except AssertionError:

 print("The condition is not fulfilled")

#Handling AssertionError

try:

 x = int(input("Enter the number between 5 and 10: "))

 assert x >= 5 and x <= 10, "Your input is INVALID"

 print("The number entered: ", x)

except AssertionError as Obj:

 print(Obj)

Exceptions
User-Defined Exceptions

Step-1 class MyException(Exception):
 def __init__(self, arg):
 self.msg = arg

Step-2 raise MyException("Message")

Step-3 try:
 #code
 except MyException as me:
 print(me)

Exceptions
User-Defined Exceptions: Program

#To create our own exceptions and raise it when needed

class MyException(Exception):

 def __init__(self, arg):

 self.msg = arg

def check(dict):

 for k, v in dict.items():

 print("Name = {:15s} Balance = {:10.2f}" . format(k, v)) if (v < 2000.00):

 raise MyException("Less Bal Amount" + k)

bank = {"Raj": 5000.00, "Vani": 8900.50, "Ajay": 1990.00}

try:

 check(bank)

except MyException as me:

 print(me)

THANK YOU

Files

Team Emertxe

Introduction

Introduction

 A file is an object on a computer that stores data, information, settings, or commands used

with a computer program

 Advantages of files

 - Data is stored permanently

 - Updation becomes easy

 - Data can be shared among various programs

 - Huge amount of data can be stored

Files
Types

Text Binary

Stores the data in the form of strings Stores data in the form of bytes

Example:

“Ram” is stored as 3 characters

890.45 is stored as 6 characters

Example:

“Ram” is stored as 3 bytes

89000.45 is stored as 8 bytes

Examples:

.txt, .c, .cpp

Examples:

.jpg, .gif or .png

Files
Opening a file

Name open()

Syntax file_handler = open("file_name", "open_mode", "buffering")

filename : Name of the file to be opened

open_mode: Purpose of opening the file

buffering: Used to stored the data temporarily

Opening Modes

w - To write the data
- If file already exist, the data will be lost

r - To read the data
- The file pointer is positioned at the begining of the file

a - To append data to the file
- The file pointer is placed at the end of the file

w+ - To write and read data
- The previous data will be deleted

r+ - To read and write
- The previous data will not be deleted
- The file pointer is placed at the begining of the file

a+ - To append and read data
- The file pointer will be at the end of the file

x - To open the file in exclusive creation mode
- The file creation fails, if already file exist

Example

f = open("myfile.txt", "w")

Here, buffer is optional, if omitted 4096 / 8192 bytes will be considered.

Files
Closing a file

Name close()

Syntax f.close()

Example #Open the file

f = open("myfile.txt", "w")

#Read the string

str = input("Enter the string: ")

#Write the string into the file

f.write(str)

#Close the file

f.close()

Files
Working with text files containing strings

To read the content from files,
f.read() : Reads all lines, displays line by line
f.readlines() : Displays all strings as elements in a list
f.read().splitlines(): To suppress the "\n" in the list

Program

#To create a text file to store strings

#Open the file
f = open("myfile.txt", "r")

#Read the data from a file
str = f.read() #Reads all data

#Display the data
print(str)

#Close the file
f.close()

Note:

"""
f.read(n): Will read 'n' bytes from the file
"""

Files
Working with text files containing strings

f.seek(offset, fromwhere)
- offset : No. of bytes to move
- fromwhere : Begining, Current, End
- Example : f.seek(10, 0), move file handler from Beg forward 10 bytes.

Appending and then reading strings, Open the file for reading data

f = open('myfile.txt', 'a+')

print('Enter text to append(@ at end): ')

while str != '@':

 str = input() # accept string into str

 # Write the string into file

 if (str != '@'):

 f.write(str+"\n")

Put the file pointer to the beginning of the file

f.seek(0,0)

Read strings from the file

print('The file cotents are: ')

str = f.read()

print(str)

Closing the file

f.close()

Files
Knowing If file exists or not

Sample:

if os.path.isfile(fname):

f = open(fname, "r")

else:

print(fname + "Does not exist")

sys.exit() #Terminate the program

Checking if file exists and then reading data

import os, sys

open the file for reading data

fname = input('Enter filename : ')

if os.path.isfile(fname):

 f = open(fname, 'r')

else:

 print(fname+' does not exist')

 sys.exit()

Read strings from the file

print('The file contents are: ')

str = f.read()

print(str)

Closing the file

f.close()

Files
Exercise

Problem- 1

To count number of lines, words and characters in a text file

Problem- 2

To copy an image from one file to another

Files
The with statement

1. Can be used while opening the file

2. It will take care of closing the file, without using close() explicitly

3. Syntax: with open("file_name", "openmode") as fileObj:

Program -1

With statement to open a file

with open('sample.txt', 'w') as f:

 f.write('I am a learner\n')

 f.write('Python is attactive\n')

Program -2

Using with statement to open a file

with open('sample.txt', 'r') as f:

 for line in f:

 print(line)

Files
The pickle + Unpickle

1. To store the data of different types, we need to create the class for it.

2. Pickle/Serialization:

- Storing Object into a binary file in the form of bytes.

- Done by a method dump() of pickle module

- pickle.dump(object, file)

3. Unpickle/Deserialization

- Process where byte stream is converted back into the object.

- Object = pickle.load(file)

Files
The pickle: Program

A python program to create an Emp class witg employee details as instance variables.

Emp class - save this as Emp.py
class Emp:
 def_init_(self, id, name, sal):
 self.id = id
 self.name = name
 self.sal = sal

 def display(self):
 print("{:5d} {:20s} {:10.2f}".format(self.id, self.name,self.sal))

pickle - store Emp class object into emp.dat file
import Emp, pickle

Open emp.dat file as a binary file for writing
f = open('emp.dat', 'wb')
n = int(input('How many employees? '))

for i in range(n):
 id = int(input('Enter id: '))
 name = input('Enter name: ')
 sal = float(input('Enter salary: '))

for i in range(n):
 id = int(input('Enter id: '))
 name = input('Enter name: ')
 sal = float(input('Enter salary: '))

 # Create Emp class object
 e = Emp.Emp(id, name, sal)

 # Store the object e into the file f
 pickle.dump(e, f)

#close the file
f.close()

Files
The unpickle: Program

A python program to create an Emp class witg employee details as instance variables.

Emp class - save this as Emp.py
class Emp:
 def_init_(self, id, name, sal):
 self.id = id
 self.name = name
 self.sal = sal

 def display(self):
 print("{:5d} {:20s} {:10.2f}".format(self.id, self.name,self.sal))

unpickle or object de-serialization
import Emp, pickle

Open the file to read objects
f = open('emp.dat', 'rb')

print('Employees details: ')
while True:
 try:
 #Read object from file f
 obj = pickle.load(f)
 # Display the contents of employee obj
 obj.display()

 except EOFError:
 print('End of file reached....')
 break

#Close the file
f.close()

Random Binary File Access
using mmap

1. Using mmap, binary data can be viewed as strings
mm = mmap.mmap(f.fileno(), 0)

2. Reading the data using read() and readline()
print(mm.read())
print(mm.readline())

3. We can also retrieve the data using teh slicing operator
print(mm[5:])
print(mm[5: 10])

4. To modify / replace the data
mm[5: 10] = str

5. To find the first occurrance of the string in the file
n = mm.find(name)

6. To convert name from string to binary string
name = name.encode()

7. To convert bytes into a string
ph = ph.decode()

Demonstrate the code

Zip & Unzip

 Zip:
 - The file contents are compressed and hence the size will be reduced

 - The format of data will be changed making it unreadable

Original
File

Compressed
File

Zipping

Unzipping

Zip & Unzip
Programs

Zipping the contents of files
from zipfile import *

create zip file
f = zipfile('test.zip', 'w', 'ZIP_DEFLATED')

add some files. these are zipped
f.write('file1.txt')
f.write('file2.txt')
f.write('file3.txt')

close the zip file
print('test.zip file created....')
f.close()

A Python program to unzip the contents of the files
that are available in a zip file.

To view contents of zipped files
from zipfile import*

open the zip file
z = Zipfile('test.zip', 'r')

Extract all the file names which are int he zip file
z.extractall()

Working With Directories
Program-1

A Python program to know the currently working directory.

import os

get current working directory
current = os.getcwd()

print('Current sirectory= ', current)

Working With Directories
Program-2

A Python program to create a sub directory and then sub-sun directory in the current
directory.

import os
create a sub directory by the name mysub
os.mkdir('mysub')

create a sub-sub directory by the same mysub2
os.mkdir('mysub/mysub2')

Working With Directories
Program-3

A Python program to use the makedirs() function to create sub and sub-sub directories.

import os

create sub and sub-sub directories

os.mkdirs('newsub/newsub2')

Working With Directories
Program-4

A Python program to remove a sub directory that is inside another directory.

import os

to remove newsub2 directory

os.rmdir('newsub/newsub2')

Working With Directories
Program-5

A Python program to remove a group of directories in the path

import os

to remove mysub3, mysub2 and then mysub.

os.removedirs('mysub/mysub2/mysub3')

Working With Directories
Program-6

A Python program to rename a directory.

import os
to rename enum as newenum
os.rename('enum', 'newenum')

Working With Directories
Program-7

A Python program to display all contents of the current directory.

import os

for dirpath, dirnames, filenames in os.walk('.'):

 print('Current path: ', dirpath)

 print('Directories: ', dirnames)

 print('Files: ', filenames)

 print()

Running other programs
Program-7

The OS module has the system() method that is useful to run an executableprogram from our

Python program

Example-1

os.system(‘dir’) Display contents of current working DIR

Example-2 os.system(‘python demo.py’) Runs the demo.py code

THANK YOU

Regular Expressions

Team Emertxe

Regular Expressions

Regular Expressions
Introduction

 RE is a string that contains special symbols and characters to find and extract the information

 Operations:
 Search
 Match
 Find
 Split

 Also called as regex

 Module: re

 This module contains the methods like
 compile()
 search()
 match()
 findall()
 split()...

‒ import re

Regular Expressions
Steps

 Step-1: Compile the RE

 Step-2: Search the strings

 Step-3: Display the result

prog = re.compile(r’m\w\w’)

str = “cat mat bat rat”

result = prog.search(str)

print(result.group())

Regular Expressions
Example-1: search()

import re

str = 'man sun mop run'

result = re.search(r'm\w\w', str)

if result: #if result is not None

 print(result.group())

search(): Combination of compile and run

- Point: Returns only the first string matching the RE

import re

str = 'man sun mop run'

prog = re.compile(r'm\w\w')

result = prog.search(str)

if result: #if result is not None

 print(result.group())

Regular Expressions
Example-2: findall()

import re

str = 'man sun mop run'

result = re.findall(r'm\w\w', str)

print(result)

findall()

- Returns all the matching strings
- Returns in the form of the list

Regular Expressions
Example-3: match()

import re

str = 'man sun mop run'

result = re.match(r'm\w\w', str)

print(result.group())

match()

- Returns the string only if it is found in the begining of the string
- Returns None, if the string is not found

Regular Expressions
Example-4: match()

import re

str = 'sun man mop run'

result = re.match(r'm\w\w', str)

print(result)

match()

- Returns None, since the string is not found

Regular Expressions
Example-5: split()

import re

str = 'This; is the: "Core" Python\'s Lecturer'

result = re.split(r'\w+', str)

print(result)

split()

- splits the string into pieces according to the given RE

 split() - splits the RE

 W : Split at non-alphanumeric character

 + : Match 1 or more occurrences of characters

Regular Expressions
Example-6: Find & Replace: sub()

import re

str = 'Kumbhmela will be conducted at Ahmedabad in India.'

res = re.sub(r'Ahmedabad', 'Allahabad', str)

print(res)

Syntax:

 sub(RE, new, old)

RE: Sequence Characters

RE: sequence characters

 Match only one character in the string

Character Description

\d Represents any digit(0 - 9)

\D Represents any non-digit

\s Represents white space Ex: \t\n\r\f\v

\S Represents non-white space character

\w Represents any alphanumeric(A-Z, a-z, 0-9)

\W Represents non-alphanumeric\b

\b Represents a space around words

\A Matches only at start of the string

\Z Matches only at end of the string

RE: sequence characters
Example-1:

import re

str = 'an apple a day keeps the doctor away'

result = re.findall(r'a[\w]*', str)

findall() returns a list, retrieve the elements from list

for word in result:

 print(word)

* Matches with 0 or more occurrences of the character

To match all words starting with ‘a’

To match all words starting with ‘a’, not sub-words then RE will look like this

import re

str = 'an apple a day keeps the doctor away'

result = re.findall(r'\ba[\w]*\b', str)

findall() returns a list, retrieve the elements from list

for word in result:

 print(word)

RE: sequence characters
Example-2:

import re

str = 'The meeting will be conducted on 1st and 21st of every month'

result = re.findall(r'\d[\w]*', str)

#for word in result:

print(word)

* Matches with 0 or more occurrences of the character

To match all words starting with numeric digits

RE: sequence characters
Example-3:

import re

str = 'one two three four five six seven 8 9 10'

result = re.findall(r'\b\w{5}\b', str)

print(result)

To retrieve all words having 5 characters

character Description

\b Matches only one space

\w Matches any alpha numeric character

{5} Repetition character

RE: sequence characters
Example-4: search()

search() will give the first matching word only.

import re

str = 'one two three four five six seven 8 9 10'

result = re.search(r'\b\w{5}', str)

print(result.group())

To retrieve all words having 5 characters using search()

character Description

\b Matches only one space

\w Matches any alpha numeric character

{5} Repetition character

RE: sequence characters
Example-5: findall()

import re

str = 'one two three four five six seven 8 9 10'

result = re.findall(r'\b\w{4,}\b', str)

print(result)

To retrieve all words having 4 and above characters using findall()

character Description

\b Matches only one space

\w Matches any alpha numeric character

{4, } Retrieve 4 or more characters

RE: sequence characters
Example-6: findall()

import re

str = 'one two three four five six seven 8 9 10'

result = re.findall(r'\b\w{3, 5}\b', str)

print(result)

To retrieve all words having 3, 4, 5 characters using findall()

character Description

\b Matches only one space

\w Matches any alpha numeric character

{3, 5} Retrieve 3, 4, 5 characters

RE: sequence characters
Example-7: findall()

import re

str = 'one two three four five six seven 8 9 10'

result = re.findall(r'\b\d\b', str)

print(result)

To retrieve only single digit using findall()

character Description

\b Matches only one space

\d Matches only digit

RE: sequence characters
Example-7: findall()

import re

str = 'one two three one two three'

result = re.findall(r't{\w}*\z', str)

print(result)

To retrieve all words starts with ‘t’ from the end of the string

character Description

\z Matches from end of the string

\w Matches any alpha numeric character

t Starting character is ‘t’

RE: Quantifiers

RE: Quantifiers

 Characters which represents more than 1 character to be matched in the string

Character Description

+ 1 or more repetitions of the preceding regexp

* 0 or more repetitions of the preceding regexp

? 0 or 1 repetitions of the preceding regexp

{m} Exactly m occurrences

{m, n} From m to n.
m defaults to 0
n defaults to infinity

RE: Quantifiers
Example-1:

import re

str = 'Tomy: 9706612345'

res = re.serach(r'\d+', str)

print(res.group())

To retrieve phone number of a person

character Description

\d Matches from any digit

+ 1 or more repetitions of the preceding regexp

RE: Quantifiers
Example-2:

import re

str = 'Tomy: 9706612345'

res = re.serach(r'\D+', str)

print(res.group())

To retrieve only name

character Description

\D Matches from any non-digit

+ 1 or more repetitions of the preceding regexp

RE: Quantifiers
Example-3:

import re

str = 'anil akhil anant arun arati arundhati abhijit ankur'

res = re.findall(r'a[nk][\w]*', str)

print(res)

To retrieve all words starting with “an” or “ak”

RE: Quantifiers
Example-4:

import re

str = 'Vijay 20 1-5-2001, Rohit 21 22-10-1990, Sita 22 15-09-2000'

res = re.findall(r'\d{2}-\d{2}-\d{4}', str)

print(res)

To retrieve DoB from a string

RE Description

\d{2}-\d{2}-\d{4} Retrieves only numeric digits in the format of 2digits-2digits-
4digits

RE: Special Character

RE: Special Characters

Character Description

\ Escape special character nature

. Matches any character except new line

^ Matches begining of the string

$ Matches ending of a string

[...] Denotes a set of possible characters
Ex: [6b-d] matches any characters 6, b, c, d

[^...] Matches every character except the ones inside brackets
Ex: [^a-c6] matches any character except a, b, c or 6

(...) Matches the RE inside the parentheses and the result can be captured

R | S matches either regex R or regex S

RE: Special Characters
Example-1:

import re

str = "Hello World"

res = re.search(r"^He", str)

if res:

 print("String starts with 'He'")

else

 print("String does not start with 'He'")

To search whether a given string is starting with ‘He’ or not

RE Description

“^He” Search from the begining

RE: Special Characters
Example-2:

import re

str = "Hello World"

res = re.search(r"World$", str)

if res:

 print("String ends with 'World'")

else

 print("String does not end with 'World'")

To search whether a given string is starting with ‘He’ or not from the end

RE Description

“World$” Search from the end

RE: Special Characters
Example-3:

import re

str = "Hello World"

res = re.search(r"world$", str, re.IGNORECASE)

if res:

 print("String ends with 'world'")

else:

 print("String does not end with 'world'")

re.IGNORECASE

To search whether a given string is starting with ‘World’ or not from the end by
ignoring the case

RE Description

“World$” Search from the end

re.IGNORECASE Ignore the case

RE: Special Characters
Example-4:

import re

str = 'The meeting may be at 8am or 9am or 4pm or 5pm.'

res = re.findall(r'\dam|\dpm', str)

print(res)

To retrieve the timings am or pm

RE: On Files

RE: On Files
Example-1:

import re

open file for reading

f = open('mails.txt', 'r')

repeat for each line of the file

for line in f:

 res = re.findall(r'\s+@\S+', line)

display if there ara some elements in result

if len(res)>0:

 print(res)

close the file

f.close()

To retrieve the emails from the file

RE: On Files
Example-2:

Open the files

f1 = open('salaries.txt', 'r')

f1 = open('newfile.txt', 'w')

repeat for each line of the file f1

for line in fi:

 res1 = re.search(r'\d{4}', line) # exptract id no from f1

 res2 = re.search(r'\d{4,}.\d{2}', line) # extract salary from f1

 print(res1.group(), res2.group()) # display them

 f2.write(res1.group()+"\t") # write id no into f2

 f2.write(res2.group()+"\n") # write salary into f2

close the files

f1.close()

f2.close()

To retrieve the data and write to another file

RE: On HTML Files

RE: On HTML Files
Example-1:

To retrieve info from the HTML file

Step-1:

import urllib.request Import this module

f = urllib.request.urlopen(r’file:///path’)
Ex:

f = urllib.request.urlopen(r’file:///~|Python\sample.html’)

urllib.request Module name

urlopen To open the html files

file:/// Protocol to open the local files

~|Python\sample.html Under home DIR, under Python sub-DIR the sample.html file is
present

file:///path

RE: On HTML Files
Example-1:

Step-2: read and decode

text = f.read() To read the file content

str = text.decode() Since the HTML file contains the information in the byte strings

Step-3: Apply RE

r'<td>\w+</td>\s<td>(\w+)<\td>\s<td>(\d\d.\d\d)<\td>'

THANK YOU

Threads

Team Emertxe

Introduction

Creating Threads

Creating Threads
Introduction

 Python provides ‘Thread’ class of threading module to create the threads

 Various methods of creating the threads:

 Method-1: Without using the class

 Method-2: By creating a sub-class to Thread class

 Method-3: Without creating a sub-class to Thread class

Creating Threads
Method-1: Without using class

 Step-1:
 - Create a thread by creating an object class and pass the function name as target

 for the thread

Syntax t = Thread(target = function_name, [args = (arg1, arg2, ...)])

target Represents the function on which thread will act

args Represents the tuple of arguments which are passed to the function

 Step-2:

 - Start the thread by using start() method

t.start()

Creating Threads
Program-1: No arguments

Creating a thread without using a class

from threading import *

#Create a function

def display():

 print("Hello I am running")

#Create a thread and run the function 5 times

for i in range(5):

 #Create the thread and specify the function as its target

 t = Thread(target = display)

 #Run the thread

 t.start()

Output:

Hello I am running

Hello I am running

Hello I am running

Hello I am running

Hello I am running

Creating Threads
Program-2: With arguments

Creating a thread without using a class

#To pass arguments to a function and execute it using a thread

from threading import *

#Create a function

def display(str):

 print(str)

#Create a thread and run the function for 5 times

for i in range(5):

 t = Thread(target = display, args = ("Hello",))

 t.start()

Output:

Hello

Hello

Hello

Hello

Hello

Creating Threads
Method-2: Creating Sub-class to Thread

 Step-1: Create a new class by inheriting the Thread class

 Example class MyThread(Thread):

MyThread New Class

Thread Base Class

 Step-1:

 Step-2: Create an Object of MyThread class

t1.join()

 Step-3: Wait till the thread completes

t1 = MyThread()

Creating Threads:
Program-1: Creating Sub-class to Thread

Creating a thread by creating the sub-class to thread class

#Creating our own thread
from threading import Thread

#Create a class as sub class to Thread class
class MyThread(Thread):

 #Override the run() method of Thread class
 def run(self):
 for i in range(1, 6):
 print(i)

#Create an instance of MyThread class
t1 = MyThread()

#Start running the thread t1
t1.start()

#Wait till the thread completes its job
t1.join()

Output:

1

2

3

4

5

run() method will override the run() method in the Thread class

Creating Threads:
Program-2:

Creating a thread that access the instance variables of a class

#A thread that access the instance variables
from threading import *

#Create a class as sub class to Thread class
class MyThread(Thread):
 def __init__(self, str):
 Thread.__init__(self)
 self.str = str

 #Override the run() method of Thread class
 def run(self):
 print(self.str)

#Create an instance of MyThread class and pass the string
t1 = MyThread("Hello")

#Start running the thread t1
t1.start()

#Wait till the thread completes its job
t1.join()

Output:

Hello

Thread.__init__(self): Calls the constructor of the Thread class

Creating Threads
Method-3: Without creating sub-class to
 Thread class

 Step-1: Create an independent class

 Step-2: Create an Object of MyThread class

t1 = Thread(target = obj.display, args = (1, 2))

 Step-3: Create a thread by creating an object to ‘Thread’ class

obj = MyThread(‘Hello’)

Creating Threads
Method-3: Without creating sub-class to
 Thread class: Program

Creating a thread without sub-class to thread class

from threading import *

#Create our own class
class MyThread:

 #A constructor
 def __init__(self, str):
 self.str = str

 #A Method
 def display(self, x, y):
 print(self.str)
 print("The args are: ", x, y)

#Create an instance to our class and store Hello string
Obj = MyThread("Hello")

#Create a thread to run display method of Obj
t1 = Thread(target = Obj.display, args = (1, 2))

#Run the thread
t1.start()

Output:

Hello

The args are: 1 2

Thread Class Methods

Single Tasking using a Thread

Single Tasking Thread
Introduction

 A thread can be employed to execute one task at a time

 Example:

 Suppose there are three task executed by the thread one after one, then it is

called single tasking

Problem: Preparation of the Tea

Task-1: Boil milk and tea powder for 5 mins

Task-2: Add sugar and boil for 3 mins

Task-3: Filter it and serve

#A method that performs 3 tasks one by one

def prepareTea(self):

self.task1()

self.task2()

self.task3()

Single Tasking Thread
Program

#Single tasking using a single thread

from threading import *

from time import *

#Create our own class
class MyThread:

#A method that performs 3 tasks one by one
def prepareTea(self):

self.task1()
self.task2()
self.task3()

def task1(self):
print("Boil milk and tea powder for 5

mins...", end = '')
sleep(5)
print("Done")

def task2(self):
print("Add sugar and boil for 3 mins...",

end = '')
sleep(3)
print("Done")

def task3(self):
print("Filter and serve...", end = '')
print("Done")

#Create an instance to our class
obj = MyThread()

#Create a thread and run prepareTea method of Obj
t = Thread(target = obj.prepareTea)
t.start()

Multi Tasking using a Multiple Thread

Multi Tasking Threads
Program-1

 Using more than one thread is called Multi-threading, used in multi-tasking

#Multitasking using two threads

from threading import *

from time import *

#Create our own class
class Theatre:

#Constructor that accepts a string
def __init__(self, str):

self.str = str

#A method that repeats for 5 tickets
def movieshow(self):

for i in range(1, 6):
print(self.str, ":", i)
sleep(1)

Output:

Run-1:

Cut Ticket : 1
Show chair : 1
Cut Ticket : 2
Show chair : 2
Cut Ticket : 3
Show chair : 3
Cut Ticket : 4
Show chair : 4
Cut Ticket : 5
Show chair : 5

Run-2:

Cut Ticket : 1
Show chair : 1
Cut Ticket : 2
Show chair : 2
Show chair : 3
Cut Ticket : 3
Cut Ticket : 4
Show chair : 4
Cut Ticket : 5
Show chair : 5

#Create two instamces to Theatre class
obj1 = Theatre("Cut Ticket")
obj2 = Theatre("Show chair")

#Create two threads to run movieshow()
t1 = Thread(target = obj1.movieshow)
t2 = Thread(target = obj2.movieshow)

#Run the threads
t1.start()
t2.start()

Race Condition

Multi Tasking Threads
Race-Condition

 Using more than one thread is called Multi-threading, used in multi-tasking

 Race-condition is a situation where threads are not acting in a expected sequence,

leading to the unreliable output

 Race-condition can be avoided by ‘Thread Synchronization’

Multi Tasking Threads
Program-2

 Using more than one thread is called Multi-threading, used in multi-tasking

#Multitasking using two threads

from threading import *

from time import *

#Create our own class
class Railway:

#Constrauctor that accepts no. of available berths
def __init__(self, available):

self.available = available

#A method that reserves berth
def reserve(self, wanted):

#Display no. of available births
print("Available no. of berths = ", self.available)

#If available >= wanted, allot the berth
if (self.available >= wanted):

#Find the thread name
name = current_thread().getName()

#Display the berth is allotted for the person
print("%d berths are alloted for %s" % (wanted, name))

#Make time delay so that ticket is printed
sleep(1.5)

#Decrease the number of available berths
self.available -= wanted

else:

#If avaible < wanted, then say sorry
print("Sorry, no berths to allot")

#Create instance to railway class
#Specify only one berth is available
obj = Railway(1)

#Create two threads and specify 1 berth is needed
t1 = Thread(target = obj.reserve, args = (1,))
t2 = Thread(target = obj.reserve, args = (1,))

#Give names to the threads
t1.setName("First Person")
t2.setName("Second Person")

#Start running the threads
t1.start()
t2.start()

The output of the above code is not correct. Run multiple times & see the o/p

Thread Synchronization

Thread Synchronization
Introduction

Thread

Synchronization

OR

Thread Safe

When a thread is already acting on an object, preventing any other

thread from acting on the same object is called ‘Thread

Synchronization’ OR ‘Thread Safe’

Synchronized

Object

The object on which the threads are synchronized is called synchronized

object or Mutex(Mutually exclusive lock)

Techniques 1. Locks (Mutex)

2. Semaphores

Thread Synchronization
Mutex

1. Creating the lock

l = Lock()

2. To lock the current object

l.acquire()

3. To unlock or release the object

l.release()

Thread Synchronization
Mutex: Program

#Create our own class
class Railway:

#Constrauctor that accepts no. of available berths
def __init__(self, available):

self.available = available

 #Create a lock Object
 self.l = Lock()

#A method that reserves berth
def reserve(self, wanted):

 #lock the current object

self.l.acquire()

#Display no. of available births
print("Available no. of berths = ", self.available)

#If available >= wanted, allot the berth
if (self.available >= wanted):

#Find the thread name
name = current_thread().getName()

#Display the berth is allotted for the person
print("%d berths are alloted for %s" % (wanted, name))

#Make time delay so that ticket is printed
sleep(1.5)

#Decrease the number of available berths
self.available -= wanted

else:

#If avaible < wanted, then say sorry
print("Sorry, no berths to allot")

 #Task is completed, release the lock

self.l.release()

#Create instance to railway class

#Specify only one berth is available

obj = Railway(1)

#Create two threads and specify 1 berth is needed

t1 = Thread(target = obj.reserve, args = (1,))

t2 = Thread(target = obj.reserve, args = (1,))

#Give names to the threads

t1.setName("First Person")

t2.setName("Second Person")

#Start running the threads

t1.start()

t2.start()

Thread Synchronization
Semaphore

Semaphore Is an object that provides synchronization based on a counter

Creation l = Semaphore(counter)

#Counter value will be 1 by default

Usage #Acquire the lock
l.acquire()

#Critical Section

#Release the lock
l.release()

Thread Synchronization
Mutex: Program

#Create our own class
class Railway:

#Constrauctor that accepts no. of available berths
def __init__(self, available):

self.available = available

 #Create a lock Object
 self.l = Semaphore()

#A method that reserves berth
def reserve(self, wanted):

 #lock the current object

self.l.acquire()

#Display no. of available births
print("Available no. of berths = ", self.available)

#If available >= wanted, allot the berth
if (self.available >= wanted):

#Find the thread name
name = current_thread().getName()

#Display the berth is allotted for the person
print("%d berths are alloted for %s" % (wanted, name))

#Make time delay so that ticket is printed
sleep(1.5)

#Decrease the number of available berths
self.available -= wanted

else:

#If avaible < wanted, then say sorry
print("Sorry, no berths to allot")

 #Task is completed, release the lock

self.l.release()

#Create instance to railway class

#Specify only one berth is available

obj = Railway(1)

#Create two threads and specify 1 berth is needed

t1 = Thread(target = obj.reserve, args = (1,))

t2 = Thread(target = obj.reserve, args = (1,))

#Give names to the threads

t1.setName("First Person")

t2.setName("Second Person")

#Start running the threads

t1.start()

t2.start()

Dead Locks

Dead Locks
Introduction

Train

Compartment

bookticket

cancelticket

#Book Ticket thread

lock-1:

lock on train

 lock-2:

 lock on compartment

#Cancel Ticket thread

lock-2:

lock on compartment

 lock-1:

 lock on train

When a thread has locked an object and waiting for another object to be released by another thread,

and the other thread is also waiting for the first thread to release the fisrt object, both threads

will continue to wait forever. This condition is called Deadlock

Dead Locks
Program

#Dead lock of threads

from threading import *

#Take two locks

l1 = Lock()

l2 = Lock()

#Create a function for cancelling a ticket

def cancelticket():

 l2.acquire()

 print("Cancelticket locked compartment")

 print("Cancelticket wants to lock on train")

 l1.acquire()

 print("Cancelticket locked train")

 l1.release()

 l2.release()

 print("Cancellation of ticket is done...")

#Create a function for booking a ticket

def bookticket():

 l1.acquire()

 print("Bookticket locked train")

 print("Bookticket wants to lock on compartment")

 l2.acquire()

 print("Bookticket locked compartment")

 l2.release()

 l1.release()

 print("Booking ticket done...")

#Create two threads and run them

t1 = Thread(target = bookticket)

t2 = Thread(target = cancelticket)

t1.start()

t2.start()

Dead Locks
Avoiding

Train

Compartment

bookticket

cancelticket

#Book Ticket thread

lock-1:

lock on train

 lock-2:

 lock on compartment

#Cancel Ticket thread

lock-1:

lock on compartment

 lock-2:

 lock on train

Dead Locks
Program: Avoiding Deadlocks

#Dead lock of threads

from threading import *

#Take two locks

l1 = Lock()

l2 = Lock()

#Create a function for cancelling a ticket

def cancelticket():

 l1.acquire()

 print("Cancelticket locked compartment")

 print("Cancelticket wants to lock on train")

 l2.acquire()

 print("Cancelticket locked train")

 l2.release()

 l1.release()

 print("Cancellation of ticket is done...")

#Create a function for booking a ticket

def bookticket():

 l1.acquire()

 print("Bookticket locked train")

 print("Bookticket wants to lock on compartment")

 l2.acquire()

 print("Bookticket locked compartment")

 l2.release()

 l1.release()

 print("Booking ticket done...")

#Create two threads and run them

t1 = Thread(target = bookticket)

t2 = Thread(target = cancelticket)

t1.start()

t2.start()

Communication between Threads

Threads Communication
Introduction

1, 2, 3, 4

False

Producer Consumer

lst

dataprodover

prod

Threads Communication
Program

from threading import *

from time import *

#Create the consumer class

class Consumer:

 def __init__(self, prod):

 self.prod = prod

 def consume(self):

 #sleep for 100ms a s long as dataprodover is False

 while self.prod.dataprodover == False:

 sleep(0.1)

 #Display the content of list when data production is over

 print(self.prod.lst)

#Create producer class

class Producer:

 def __init__(self):

 self.lst = []

 self.dataprodover = False

 def produce(self):

 #create 1 to 10 items and add to the list

 for i in range(1, 11):

 self.lst.append(i)

 sleep(1)

 print("Item produced...")

 #Inform teh consumer that the data production is completed

 self.dataprodover = True

#Create producer object

p = Producer()

#Create consumer object and pass producer object

c = Consumer(p)

#Create producer and consumer threads

t1 = Thread(target = p.produce)

t2 = Thread(target = c.consume)

#Run the threads

t1.start()

t2.start()

Threads Communication
Improving Efficiency

 Using notify() and wait()

 Using queue

Threads Communication
Improving Efficiency: notify(), wait()

#Create Producer Class

class Producer:

 def __init__(self):

 self.lst = []

 self.cv = Condition()

 def produce(self):

 #Lock the conditional object

 self.cv.acquire()

 #Create 1 to 10 items and add to the list

 for i in range(1, 11):

 self.lst.append(i)

 sleep(1)

 print("Item produced...")

 #Inform the consumer that production is completed

 self.cv.notify()

 #Release the lock

 self.cv.release()

#Create Consumer class

class Consumer:

 def __init__(self, prod):

 self.prod = prod

 def consume(self):

 #Get lock on condition object

 self.prod.cv.acquire()

 #Wait only for 0 seconds after the production

 self.prod.cv.wait(timeout = 0)

 #Release the lock

 self.prod.cv.release()

 #Display the contenst of list

 print(self.prod.lst)

Threads Communication
Improving Efficiency: Queues

6 5 4 3 2 1

Producer Consumer

q.put()

prod

prod.q.get()

Threads Communication
Improving Efficiency: Queues

#Create Producer class

class Producer:

 def __init__(self):

 self.q = Queue()

 def produce(self):

 #Create 1 to 10 items and add to the queue

 for i in range(1, 11):

 print("Producing item: ", i)

 self.q.put(i)

 sleep(1)

#Create Consumer class

class Consumer:

 def __init__(self, prod):

 self.prod = prod

 def consume(self):

 #Receive 1 to 10 items from the queue

 for i in range(1, 11):

 print("Receiving item: ", self.prod.q.get(i))

Daemon Threads

Daemon Threads
Introduction

● Sometimes, threads should be run continuosly in the memory

● Example

- Internet Server

- Garbage collector of Python program

● These threads are called Daemon Threads

● To make the thread as Daemon, make

d.daemon = True

Daemon Threads
Program

#To display numbers from 1 to 5 every second

def display():

 for i in range(5):

 print("Normal thread: ", end = '')

 print(i + 1)

 sleep(1)

#To display numbers from 1 to 5 every second

def display():

 for i in range(5):

 print("Normal thread: ", end = '')

 print(i + 1)

 sleep(1)

#Create a normal thread and attach it to display() and run it

t = Thread(target = display)

t.start()

#Create another thread and attach it to display_time()

d = Thread(target = display_time)

#make the thread daemon

d.daemon = True

#Run the daemon thread

d.start()

THANK YOU

Python2 Vs Python3

Team Emertxe

Division

Division

2.x 3.x

print 5 / 2 print (5 / 2)

Output

2

Output

2.5

Print

Print

2.x 3.x

print "Hello World" print ("Hello World")

Output

Hello World

Output

Hello World

Unicode

Unicode

2.x 3.x

print(type('Hello'))

print(type(b'Hello'))

print(type('Hello'))

print(type(b'Hello'))

Output

<type 'str'>
<type 'str'>

Output

<class 'str'>
<class 'bytes'>

xrange

Xrange

2.x 3.x

for x in xrange(1, 5):
 print(x)

for x in xrange(1, 5):
 print(x)

Output

1
2
3
4

Output

Original exception was:
Traceback (most recent call last):
 File "1.py", line 1, in <module>
 for x in xrange(1, 5):
NameError: name 'xrange' is not defined

Raising Exceptions

Raising Exceptions

2.x 3.x

print 'Python'

raise IOError, "file error"

print ('Python')

raise IOError("file error")

Output

Traceback (most recent call last):
 File "1.py", line 2, in <module>
 raise IOError, "file error"
IOError: file error

Output

Original exception was:
Traceback (most recent call last):
 File "1_3x.py", line 2, in <module>
 raise IOError("file error")
OSError: file error

Raising Exceptions

2.x 3.x

print 'Python'
try:
 Generate_Name_error
except NameError, err:
 print err, '--> our error message'

print ('Python')
try:
 Generate_Name_error
except NameError as err:
 print (err, '--> our error message')

Output

Python
name 'Generate_Name_error' is not defined -->
our error message

Output

Python
name 'Generate_Name_error' is not defined -->
our error message

THANK YOU

	Slide 1
	Python
	Features of Python
	Features of Python...
	Execution of a Python Program
	Memory Management in Python
	Garbage Collection in Python
	C Vs Python
	C Vs Python
	0135e33f-ed9e-4386-a047-3d51d6f37d3a.pdf
	Slide 1
	Comments
	Comments Single Line Comments
	Comments Multi Line Comments
	Docstrings Multi Line Comments
	How python sees variables
	Data-Types None Type
	Data-Types Numeric Type
	Data-Types Numeric Type
	Data-Types Numeric Type
	Representation Binary, Octal, Hexadecimal
	Conversion Explicit
	Conversion Explicit
	Conversion Explicit
	bool Data-Type
	bool Data-Type
	Sequences
	Sequences str
	Sequences str
	Sequences str
	bytes Data-types
	Sequences bytes
	Sequences bytes
	bytearray Data-type
	Sequences bytearray
	list Data-type
	Sequences list
	tuple Data-type
	Sequences tuple
	range Data-type
	Sequences range
	Sequences range
	Sets
	Sets
	Sets set
	Sets set
	Sets frozenset
	Mapping Types
	Mapping
	Mapping
	Determining the Datatype
	Determining Datatype of a Variable

	6ffda7b6-6cf9-4da7-9516-dbe58b76bf52.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	4b456214-2aa5-44b2-b3b5-5f84d553a6c1.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	64889e80-c4aa-4a7c-8422-af47222d67a1.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

	83ad9d1d-3f30-4c6a-9094-f1464529ecc5.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

	399a10d2-a3b6-4b04-83b9-fdd9f5b1ace2.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	32b56393-b5fe-498b-80d3-66edd34be45a.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

	67cb5b29-f328-442c-96a8-37ff3ff9e7a5.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	d17fd158-0134-4244-8cdb-5adeaab4c14b.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

	ed7e1567-1886-4862-912b-a0bb5ab782b7.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

	23f75c2d-a69e-44eb-a1a0-0fb2c7e8c560.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

	ab0ea126-9977-4eaa-94a7-e82170a9e171.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

	e47ad747-d7ee-4155-88a9-c53f1e301cb6.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	319ac938-99f7-48b3-953c-66b4cc97cdfa.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

	6bcd48c9-63f4-44e6-af26-c743274e59fa.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

	693bb612-16fe-48a4-ac46-d52221e8dcd2.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

	8471a544-c1d8-4c8c-88f0-3b3c8dd030ca.pdf
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

