
Developers Let's Try

48  |  JUNE 2014  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  JUNE 2014  |  49

Embedded C programmers who have worked with
structures should also be familiar with the use of bit
fields structures. Use of bit fields is one of the key

optimisation methods in embedded C programming, because
these allow one to pack together several related entities,
where each set of bits and single bits can be addressed.
Of course, the usage of bit fields is ‘easy' and comes
handy, especially during low level programming. Though
considered as one of the unique features of C programming,
bit fields do have some limitations. Let us look at these by
exploring the example problems in this article.

Data types and bit fields
Let us look into the signed qualifiers affecting the output
of the bit field structure. Please note that the code snippets
provided here are tested with the GCC compiler [gcc version
4.7.3] running under a Linux environment.

Let us consider a simple small C code snippet as shown
below, with a structure named bit field, with three integer fields—
hours, mins and secs, of bit field sizes 5, 6 and 6, respectively:

typedef struct bit_field

{

	 int hours : 5;

	 int mins : 6;

	 int secs : 6;

}time_t;

Be Cautious While Using
Bit Fields for Programming

Now let us declare a variable alarm of type time_t and
set values as 22, 12 and 20, respectively:

//Declaration of the variable of type time_t

time_t alarm;

/Assigning the values to the different members of the bit-

field structures

alarm.hours = 22;

alarm.mins = 12;

alarm.secs = 20;

When we print these values using a simple printf
statement, what could be the output? At first, most of us will
envision the answers to be 22, 12 and 20, for hours, mins and
secs respectively. Whereas when we actually compile and
run the run the code, the value printed for the hours would be
different - 10, 12 and 20 (as shown in Figure 1).

Where did we go wrong?
1. We all know that the default signed qualifier for the ‘int'

is ‘signed int'.
2. 	 We reserved 5 bits for storing the hours field assuming we

were using the 24-hour format. From among 5 bits, 1 bit
was used for storing the sign of the number, which means
only 4 bits were then available for storing the actual value.
In these 4 bits, we can store the numbers ranging from
-16 to +15 according to the formula (-2^k) to ([+2^k] -1))
including ‘0’, where ‘k' indicates the number of bits.

In this article, the author tells embedded C programmers why writing code
involving bit fields needs to be done carefully, failing which the results may
not be as expected. However, bit fields are handy as they involve only low level
programming and result in efficient data storage.

DevelopersLet's Try

48  |  JUNE 2014  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  JUNE 2014  |  49

3.	 We will see how 22 is stored in binary form in 5 bits
through pictorial representation (Figure 2).

4.	 From the table(as shown in Figure 2), it is very clear
that sign bit (b4) is SET, which indicates the value is
negative. So, when printed using the printf statement,
we will get -10 (the decimal value of 10110), because of
which we got an unexpected output.
Now that we have understood the problem, how do we

fix it? It is very simple; just qualify ‘int’ to ‘unsigned int’ just
before the hours in the bit field structure, as shown below.
The corrected output is shown in Figure 3.

#include <stdio.h>

typedef struct bit_field

{

 unsigned int hours : 5;

 unsigned int mins : 6;

 unsigned int secs : 6;

}time_t;

int main()

{

 //Declaration of the variable of type time_t

 time_t alarm;

 //Assigning the values to the different members of

the bit-field structures

 alarm.hours = 22;

 alarm.mins = 12;

 alarm.secs = 20;

 printf("Hours : %d\nMins : %d\nSecs : %d\n", alarm.

hours, alarm.mins, alarm.secs);

}

Bit wise operators definitely provide advantages, but
they need to be used a ‘bit’ carefully. In the embedded
programming environment, they might lead to major issues
in case they are not handled properly.

Endianess of the architecture and bit fields
In this problem, we will see how Endianess affects the bit
fields. Bit fields in C always start at Bit 0, which is the least
significant bit (LSB) on Little Endian. But most compilers
on Big Endian systems inconveniently consider the most
significant bit (MSB)—Bit 0.

 Note: Big Endian machines pack bit fields from the
most significant byte to the least significant.

Little Endian machines pack bit fields from the least
significant byte to the most.

To start with, let us consider the code(Labelled as byte_
order.c) given below:

 1 #include <stdio.h>

 2 typedef union {

 3 unsigned int value;

 4 struct {

 5 unsigned char one : 8;

 6 unsigned char two : 8;

 7 unsigned char three : 8;

 8 unsigned char four : 8;

 9 } bit_field;

 10 } data_t;

 11

 12 int main() {

 13

 14 data_t var = {0x1A1B1C1D};

 15 unsigned char *ptr = (unsigned char *)(&var);

 16

 17 printf("The entire hex value is 0x%X\n", var.

value);

 18 printf("The first byte is 0x%X @ %p\n", *(ptr +

0), ptr + 0);

 19 printf("The second byte is 0x%X @ %p\n", *(ptr +

1), ptr + 1);

 20 printf("The third byte is 0x%X @ %p\n", *(ptr +

2), ptr + 2);

 21 printf("The fourth byte is 0x%X @ %p\n", *(ptr +

3), ptr + 3);

 22

 23 return 0;

 24 }

Figure 1: Actual output

Figure 3: Correct output after correct usage of the data type

Figure 2: Pictorial representation of the binary value of 22 in 5 bits

b4 b3 b2 b1 b0

1 0 1 1 0

Developers Let's Try

50  |  JUNE 2014  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  JUNE 2014  |  51

Figure 4: Output of the code byte_order.c

When I run this code in my system, I get the output shown
in Figure 4.

From Figure 4, it is very clear that the underlying
architecture is following the little Endian. When the same
code is run under a different architecture, which follows Big
Endian, the result will be different. So, portability issues need
to be considered while using bit fields.

Let’s look at one more example to understand how bits are
packed in Big Endian and Little Endian.

To start with, let us consider the sample code(Labelled as
bit_order.c) given below:

 1 #include <stdio.h>

 2 typedef union {

 3 unsigned short value;

 4 struct {

 5 unsigned short v1 : 1;

 6 unsigned short v2 : 2;

 7 unsigned short v3 : 3;

 8 unsigned short v4 : 4;

 9 unsigned short v5 : 5;

 10 } bit;

 11 } data_t;

 12

 13 int main() {

 14

When I run this code in my system, I get the output as
shown in Figure 7.

From this figure, one can see that the bits are packed from
the least significant on a little Endian machine. Figure 8 helps
us understand how the bits ordering takes place.

If you run the same code in big Endian architecture, you
will get the output given in Figure 9.

For more clarity, see Figure 10.
From the last two examples, it is very clear that bit fields

pose serious portability issues. When the same programs are
compiled on different systems, they may not work properly.
This is because some C compilers use the left-to-right order,
while other C compilers use the right-to-left order. They also
have architecture-specific bit orders and packing issues.

As a concluding note, let us list the advantages and
limitations of bit fields structures.

Advantages
1. 	 Efficiency - Storage of data structures by packing.

Figure 6: Byte-ordering in a Big–Endianess machine

Figure 5: Byte-ordering in a Little–Endianess machine

Low
Address

Low
Address

High
Address

High
Address Figure 7: Output of the code bit_order.c

Figure 8: Bit ordering in small Endianess architecture

 15 data_t var ;

 16 unsigned char *ptr = (unsigned char*)(&var);

 17 var.bit.v1 = 1;

 18 var.bit.v2 = 2;

 19 var.bit.v3 = 3;

 20 var.bit.v4 = 4;

 21 var.bit.v5 = 5;

 22

 23 printf("The Entire hex value is 0x%X\n", var.

value);

 24 printf("The first byte is 0x%X @ %p\n", *(ptr +

0), ptr + 0);

 25 printf("The second byte is 0x%X @ %p\n", *(ptr +

1), ptr + 1);

 26

 27 return 0;

 28 }

1D 1C 1B 1A

1A 1B 1C 1D

Hex Value 1 5 1 D

Binary Value 0 0 0 1 0 1 0 1 0 0 0 1 1 1 0 1

Struct
Members

v5:5 v4:4 v3:3 v2:2 v1:1

Address + 1 Address + 0

DevelopersLet's Try

50  |  JUNE 2014  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  JUNE 2014  |  51

By: Satyanarayana Sampangi
The author is a member of the embedded software team at
Emertxe Information Technologies (http://www.emertxe.com). His
area of interest lies in embedded C programming combined with
data structures and microcontrollers. He likes to experiment with
C programming in his spare time to explore new horizons. He can
be reached at satya@emertxe.com

Figure 9: Expected output of the code bit_order.c when run in big
Endian architecture Figure 10: Bit ordering in big Endianess architecture

2. 	 Readability - Members can be easily addressed by the
names assigned to them.

3. 	 Low level programming – The biggest advantage of bit
fields is that one does not have to keep track of how
flags and masks actually map to the memory. Once the
structure is defined, one is completely abstracted from
the memory representation as in the case of bit-wise
operations, during which one has to keep track of all
the shifts and masks.

Limitations
1. 	 As we saw earlier, bit fields result in non-portable

code. Also, the bit field length has a high dependency
on word size.

2.	 Reading (using scanf) and using pointers on bit fields is

not possible due to non-addressability.
3.	 Bit fields are used to pack more variables into a

smaller data space, but cause the compiler to generate
additional code to manipulate these variables. This
results in an increase in both space as well as time
complexities.
4. The sizeof() operator cannot be applied to the bit fields,

since sizeof() yields the result in bytes and not in bits.

Hex Value C D 0 A

Binary Value 1 1 0 0 1 1 0 1 0 0 0 0 1 0 1 0

Struct
Members

v1:1 v2:2 v3:3 v4:4 v5:5

Address + 1 Address + 0

