
Developers Insight

that you make an object eligible for garbage collection if it
is no longer required. Thereby, the garbage collector will
take care of this object as a part of the routine clean-up.
For example, if you put a used tea-cup in a garbage bin,
the local cleaning authority will naturally take care of it. In
Java, when the object does not have any reference pointing
to it, then it becomes eligible for garbage collection. The
subsequent sections of this article list various ways to
make an object eligible for GC.

Illustration 1- Nullifying the reference variable
Let us look at the following code snippet.

Student s1 = new Student();

Student s2 = new Student();

s1=null; // One object eligible for garbage collection

In the above code, we can see two objects of Student
(s1 and s2). When we create a second object of the
same class, it is obvious that you don’t need the first
object or the previous object; in which case, it is highly
recommended that the previous object is made eligible
for garbage collection. So we use s1=null to make the
previous object eligible for garbage collection.

Illustration 2- Re-assigning the
reference variable
Let us take a look at another snippet shown below.

In object-oriented programming languages (like C++ and
Java), there could be unused objects that are still a part
of the program. These will create undesirable results like

an out of memory error, for instance, during runtime, if left
unattended. The memory occupied by such objects is known
as ‘garbage’ and the mechanism to eliminate this from the
program is called ‘garbage collection’.

In languages like C++ (which is one of the older OOP
languages), the programmer is responsible for creating and
destroying the objects. If the purpose for which the object was
created is fulfilled but the programmer neglects to delete the
now-useless objects, the entire memory will be filled with old
and unwanted objects. This will prevent the creation of new
objects, thereby bringing down the entire application.

Garbage Collection (GC) in Java
Unlike C++, Java provides the programmer with an assistant
to delete useless objects, which is called the garbage collector.
In Java, there is no OutOfMemoryError thanks to the garbage
collector, which destroys unused objects. Java is also called a
robust programming language because of such mechanisms.
Because of this background mechanism, the stress on the
programmer is significantly less.

The various ways to make an object
eligible for GC
In Java, even though the programmer is not responsible
for destroying the objects, it is still highly recommended

In programming, garbage collection is a form of automatic memory management, whereby
the memory used by an object is freed or released by destroying the object when it becomes
redundant in the program. Garbage collection is considered one of the best practices to avoid
any untoward results when a program is executed.

Performing Garbage Collection in Java

68  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  69

DevelopersInsight

Student s1 = new Student(); // first object

Student s2 = new Student(); //second object

/*Creating third object*/

s1 = new Student(); // first object becomes eligible for

garbage collection

s2=s1; // second object becomes eligible for garbage

collection

In the above code, we have created three objects. As our
latest object is the third object, we don’t need the first and the
second objects. So, we will make them eligible for garbage
collection. The third object is now pointed by ‘s1’ so there is
no longer any reference pointing to the first object, making
it eligible for garbage collection. Similarly, there is no need
for the second object as well, so we assign the ‘s1’ reference
variable of the third object to ‘s2’ which was earlier pointing
to the second object. Now both ‘s1’ and ‘s2’ point to the third
object, so the first and second objects become eligible for
garbage collection.

Illustration 3-Objects created inside a method
Now let us move on to an illustration of objects inside a
method, using three examples.

Example 1

Class Student{ }

Class Test{

public static void main(String[] args){

m1();

}

public static void m1(){

Student s1 = new Student();

Student s2 = new Student();

 }

}

In the above code, we see that two Student objects are
created inside a method; so the moment method m1() finishes
its execution, the local variables s1 and s2 are no longer
available. Hence, there is no reference variable at all pointing
to either of the two Student objects, in which case, the above
two objects become eligible for garbage collection.

Example 2

Class Student { }

Class Test {

	 public static void main(String[] args){

	

		 Student s =m1();

	 }

	 public static Student m1(){

		 Student s1 = new Student();

		 Student s2 = new Student();

		 return s1;

	 }

}

In the above code, we see that method m1() returns the
s1 object; so even though s1 is a local variable, it exists
even after the m1() method finishes its execution. But s2 is
not returned by the m1() method; so once the m1() method
finishes its execution, s2 does not exist any more. Hence, in
the above code only one object becomes eligible for garbage
collection. Let’s make a small change in the above code in the
main() function, as follows:

public static void main(String[] args){

m1();

}

We know that the m1() method return type is Student,
but we are not holding the return type while calling the m1()
method in the main() function, as there is no hard and fast rule
to compulsorily hold the return type of the method. In such
a case, when we don’t hold the return type m1() method in
the main() function, then both objects referred by s1 and s2
become eligible for garbage collection. In general, the object
created inside a method is by default eligible for garbage
collection, except in the above exceptional case.

Example 3

Class Test {

	 static Student s;

	 public static void main(String[] args){

		 m1();

	 }

	 public static void m1(){

	

		 s = new Student();

		 Student s1 = new Student();

	 }

}

In the above code, ‘s’ is a static variable, so although the two
Student objects are created inside a method, only one object,
which is referred by ‘s1’, is eligible for garbage collection. The
object that is referred by ‘s’ is not eligible for garbage collection,
because ‘s’ is a static variable and not a local one.

Illustration 4-Island of isolation
In the real world, an island is a piece of land surrounded by
water. In the case of Java, an island of isolation refers to an

68  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  69

Developers Insight

By: Vikas Kumar Gautam

The author is a mentor at Emertxe Information Technology (P) Ltd. His
main areas of expertise include application development using Java/
J2EE and Android for both Web and mobile devices. A Sun Certified
Java Professional (SCJP), his interests include acquiring greater
expertise in the application space by learning from the latest happenings
in the industry. He can be reached at vikash_kumar@emertxe.com

object that has no reference variable pointing to it from
outside, but all the objects pointing to each other internally.
Let us consider the following code:

Class Test {

	 Test i;

	 public static void main (String[] args){

	

/*Creating three objects*/

	 Test t1 = new Test();

	 Test t2= new Test();

	 Test t3 = new Test();

/*Assigning the reference of the all the three objects to

each object’s instance variable.*/

	 t1.i = t2;

	 t2.i = t3;

	 t3.i = t1;

/*Assigning null to the reference variable*/

	 t1 = null;// no object eligible for garbage

collection(GC)

	 t2= null;//no object eligible for GC

	 t3 = null;// all three objects are now eligible for GC

	 }

}

In Figure 1 there are three objects, referred to as t1, t2 and
t3, respectively, and each object has the ‘i’ instance variable
associated with it. These instance variables point to each
other’s objects and, hence, the bonding between these objects
becomes more powerful.

Figure 2 is a bit different. Here, all the three objects are
still associated by the internal bonding of the instance variable
but, unfortunately, the external bonding is lost by t1, t2 and
t3; so these three objects become isolated and consequently
eligible for garbage collection.

Requesting JVM to run the garbage collector
The method to request JVM to run garbage collection is
called the gc() method. It is used to give a call to the garbage
collector explicitly. The call to the garbage collector by the
gc() method doesn’t mean that the garbage collector is ready
to perform garbage collection. The gc() method is present
inside java.lang.System class and java.lang.Runtime class.

Class Test {

Public static void main(String[] args){

Test t = new Test();

T=null;

System.gc();

}

/*Overriding the finalize() method. This method is explained

in the below section*/

public void finalize(){

System.out.println(“Garbage collection is performed”);

}

}

Finalisation
Finalisation takes place when the finalize() method is invoked.
The finalize() method is called by the garbage collector on
an object when garbage collection determines that there are
no more references to the object. The method is called by the
garbage collector thread each time, before the object is collected
as garbage. This is the last option for any object to perform a
clean-up task. The finalize method is declared in the java.lang.
Object class. Inside the finalize method, you are supposed to
write the code which has to be performed before an object is
destroyed. It is a best practice to call the super.finalize() method
once your class frees the resources it was holding. If you don’t
call super.finalize() then any resources held by the super class
may never be free. The method is helpful when an object
needs to perform some special task before it gets caught by the
garbage collector, such as closing the open database connection,
open socket or any files. However, if the database connections
or files are programmed to be released within a very short
period, you will rarely need finalize.

protected void finalize() {

//-------method code-------

super.finalize();

 }														

t1 i

i

i

t2

t3

t1 i

i

i

t2

t3

Figure 1: When objects have reference Figure 2: When objects do not
have reference

70  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  PB

