
Developers Insight

Illustration 1: Polling mechanism
Let us consider the following small and simple code snippet
to study the behaviour of the ‘volatile’ key word in C:

 1 int main()

 2 {

 3 int i = 0;

 4 int flag = 0;

 5

 6 //Some code

 7

 8 while(flag != 1)

 9 {

 10 //Keep polling until flag becomes 1

 11 ;

 12 }

 13

 14 //rest of the code

 15 return 0;

 16 }

Here, the intention of the programmer is to keep polling
inside the while loop until the flag value is SET to the value
1, which might be done by a hardware/peripheral device.
However, during the compilation phase, the compiler will find

Volatile is a qualifier in C, which is applied
to a variable when it is declared. It is used
extensively while writing programs for embedded

systems, especially when dealing with hardware. The
aim of this article is to give you an idea of how to use
a Volatile qualifier. So, what are its instructions to the
compiler? It tells the compiler that the value of the
variable may change at any time during the execution of
the code without the knowledge of the compiler. If proper
precautions are not taken, the desired output may not be
achieved. A variable should be declared volatile whenever
its value may change unexpectedly.

Volatile variables are, therefore, variables that can be
changed at any time by other external programs or by the
same program.

The syntax for declaring the variable as ‘volatile’ is:

volatile dataType variable;

Let us understand the ‘volatile’ key word thoroughly
through the following illustrations.

 Note : Remember that all codes are compiled in the gcc
compiler version: gcc version 4.8.2 (Ubuntu 4.8.2-19ubuntu1)

In C programming, the use of the key word ‘volatile’ is intended to prevent the compiler
from applying any optimisations on objects that can be changed in ways that the compiler
cannot determine. In this article, the author demystifies the use of the volatile key word.

Volatile Demystified

int main()
{
int i = 0;
int flag = 0;

//Some code

while(TRUE)
{
//Infinite loop
;
}
//rest of the code
return 0;
}

int main()
{
volatile int i;

//Some code goes
here

//Loop for delay
generation
for(i = 0; i <
100; i++)
{
;
}

//Again the
remaining code
goes here

return 0;
}

76  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  77

DevelopersInsight

that this piece of code is not achieving any valuable results;
hence, the code will be optimised by removing this.

If one observes the code that follows below, the condition
inside the while loop is replaced by the compiler to while
(TRUE). This is primarily done in compilers in the embedded
systems environment, where generating optimal machine code
is very important. As a programmer, if you are not aware of
this, it could result in unexpected behaviour at runtime.

 1 int main()

 2 {

 3 int i = 0;

 4 int flag = 0;

 5

 6 //Some code

 7

 8 while(TRUE)

 9 {

 10 //Infinite loop

 11 ;

 12 }

 13

 14 //rest of the code

 15 return 0;

 16 }

Now, the question is, “How can one confirm that the
compiler is really optimising the code?” Let us check the
size of the assembly code (call this while_without_volatile.s)
generated by the compiler using the steps given below; the
size is shown in Figure 1.

How to generate assembly code from the C
source code in the gcc compiler
Step 1: Compile the C source code with the -save-temps
option as shown below:

gcc -o sample sample.c -save-temps

Step 2: Check out the sample.s file generated by issuing
the ls command.

When we compile code with the –save-temps option of

gcc, it generates three output files:
•	 Pre-processed code (with the .i extension)
•	 Assembly code (with the .s extension)
•	 Object code (with the .o option)

Now, if you observe Figure 1, the size is found to be 482
bytes in the fifth column. Next, qualify the flag variable to
‘volatile’ for the code shown in Illustration 1, and generate
the assembly code (call this while_with_volatile.s) before
checking the size by issuing the ls command. The size
obtained in my system is shown in Figure 2.

Now, if you observe Figure 2, the size is found to be 501
bytes in the fifth column. So, when we compare the sizes of
both the codes, with and without the ‘volatile’ key word, it is
obvious that the compiler is not optimising the 'flag' variable
when it is qualified as 'volatile'.

Let us experiment further to explore where exactly the
compiler is optimising the code. To find this out, apply
the vimdiff command to the assembly codes generated
with and without the keyword ‘volatile’—the difference
is shown in Figure 3.

How to apply the vimdiff command
First, type:

vimdiff while_without_volatile.s while_with_volatile.s

In the disassembly of the non-volatile version (while_
loop_without_volatile.s) of the while loop shown in Figure
3, the statements in lines 14 and 15 load the value of the flag
into memory locations [-8(%ebp) & -4(%ebp)] outside the
loop labelled .L2. This is because, since the flag variable is
not declared volatile, the compiler assumes that its value
cannot be modified outside the program. Having already
read the value of the flag into memory locations [-8(%ebp)
& -4(%ebp)], the compiler omits reloading the value of the
flag variable when optimisation is enabled, because its value
cannot change. The result is ultimately the control getting into

Figure 1: Size of assembly code generated by the compiler without
qualifying the variable as volatile

Figure 2: Size of assembly code generated by the compiler
with the variable qualified as volatile

Figure 3: Difference between the assembly codes generated with and without
the ‘volatile’ key word

76  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  77

Developers Insight

the infinite loop labelled .L2.
In contrast, in the disassembly of the volatile version

(while_loop_with_volatile.s) of the while loop shown in
Figure 3, the compiler assumes that the value of the flag
variable can change outside the program and performs
no optimisations. Consequently, the value of the flag is
loaded into the register %eax every time from the memory
[-8(%ebp)] inside the loop labelled .L2. As a result, the value
of the flag is checked every time, and further decisions are
taken depending upon the value of the flag variable.

To avoid optimisation problems caused by changes to the
program state external to the implementation, it is always safer to
declare the variable as ‘volatile’. This helps to avoid unexpected
results. From Figure 3, we can conclude that the ‘volatile’ key
word prevents optimisation of the code by the compiler.

Illustration 2: Delay generations
using loops
Let us consider another example, where ‘for’ loops are used
commonly in the Embedded C code to generate small delays
as shown in the following code:

 1 int main()

 2 {

 3 int i;

 4

 5 //Some code goes here

 6

 7 //Loop for delay generation

 8 for(i = 0; i < 100; i++)

 9 {

 10 ;

 11 }

 12

 13 //Again the remaining code goes here

 14

 15 return 0;

 16 }

In fact, a compiler might optimise the code shown above
into nothing. A local variable ‘i’ is the counter for a loop that
does nothing but increment value ‘i’ until it’s equal to 100. Thus,
the optimiser can replace the loop with a single assignment that
just sets ‘i’ to its final value. When that happens, the delay code
doesn’t achieve what the programmer had intended. So, it is

always better to declare the local variable ‘i’ as ‘volatile’ even
though the code might be less efficient, since we will get the
desired results, as shown in the code below:

 1 int main()

 2 {

 3 volatile int i;

 4

 5 //Some code goes here

 6

 7 //Loop for delay generation

 8 for(i = 0; i < 100; i++)

 9 {

 10 ;

 11 }

 12

 13 //Again the remaining code goes here

 14

 15 return 0;

 16 }

Let us generate the assembly codes for the examples given
in the last two code snippets above, using the commands
given in ‘How to generate assembly code from the C source
code in the gcc compiler’, and then get the size of the
assembly codes using the ls command as given in Figure 4.

Comparing the sizes in Figure 4, one can conclude that
the compiler is applying the optimisation techniques without
the volatile qualifier. In other words, the compiler is not
allowed to reorder the instructions on volatile variables
with respect to other memory operations. The disassembly
code, both with and without the ‘volatile’ key word, for
Illustration 2 is shown in Figure 5.

Illustration 3: Global variables accessed
by multiple tasks within a multi-threaded
application
Let us consider one more example to show how the global
variable will be affected by the compiler optimisation in a multi-
threaded application. The example code snippet is shown below:

 1 #define FALSE 0

 2 #define TRUE 1

 3

 4 volatile unsigned int global_item_count;

 5

 6 //Other functions

 7 void thread_one(void)

 8 {

 9 global_item_count = FALSE;

 10 while(global_item_count == FALSE)

 11 {

 12 sleep(1);

 13 }

Figure 4: Size of assembly codes generated by the compiler with and
without volatile qualifier

78  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  79

DevelopersInsight

By: Satyanarayana Sampangi

The author is a member of the embedded software team at
Emertxe Information Technology (P) Ltd (http://www.emertxe.
com). His areas of interest are embedded C programming
combined with data structures and microcontrollers. He can be
reached at satya@emertxe.com

 14 //Some code goes here

 15 }

 16

 17 void thread_two(void)

 18 {

 19 //some code goes here

 20

 21 global_item_count++;

 22 sleep(5);

 23

 24 //some code goes here

 25

 26 }

In the above demo program, the compiler doesn’t have
any knowledge of the context switching between two threads.
If the compiler optimisations are turned ‘ON’, then the
compiler will assume that the global_item_count variable is
always ‘ZERO’ and no other part of the thread is attempting
to modify it. So, the compiler may replace the while loop in
the code above, as shown in the code below:
	 .

	 .

	 .

	 while(TRUE)

	 {

		 sleep(1);

	 }

	 .

	 .

	 .

…which is nothing but the infinite loop; so in order
to avoid such optimisations by the compiler, it is safe
to declare the variable global_item_count as ‘volatile’.
Similarly, one can realise the effect of the producer-
consumer problem accessing the global variable without
declaring it as ‘volatile’.

Illustration 4: Interrupt service routines
Let us consider another example given in in the code snippet
below, where ‘volatile’ plays a very important role in the ISR
(Interrupt Service Routines):

 1 int flag = 0;

 2 void rx_isr(void)

 3 {

 4 flag = 1;

 5 }

 6 int main()

 7 {

 8 // ...

 9 while(!flag)

 10 {

 11 //Some code goes here

 12 }

 13 // ...

 14 }

In the above example, if the flag is not declared as
‘volatile’, the compiler may optimise the code (assuming
always that the flag is ZERO) and replace the while(!flag) to
while(TRUE), which is nothing but the infinite loop. But the
flag value might change when the interrupt occurs.

 Note : Whether to declare the variable as ‘volatile’
or not is cross-compiler dependent. Anyhow it is a good
practice to declare the variable as ‘volatile’ to achieve the
portability of the code.

A variable should be declared volatile whenever its
value can change asynchronously. In real time, three types of
variables can change:
•	 Memory-mapped peripheral registers (e.g., polling

and waiting)
•	 Global variables modified by an Interrupt Service Routine
•	 Global variables accessed by multiple tasks within a

multi-threaded application
The main use of the ‘volatile’ key word is to prevent

the compiler from optimising the code in terms of time
complexity, by generating a code that uses CPU registers
as faster ways to represent variables. Declaring the variable
as ‘volatile’ forces compiled code to access the exact
memory location in RAM on every access to the variable to
get its latest value, thereby avoiding any runtime surprises
for the programmer.

Figure 5: Differences between the assembly codes generated
with and without the ‘volatile’ keyword

78  |  January 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  January 2015  |  79

