Insight

Fundamental of

This article explains what threads are in Java. It elaborates on their uses and on how to
implement them, while discussing their life cycle.

public void run() |

display(fInterpreter. getHelloPrompt.()

s each line «

S/ Inte sreter 's sult
Input.Str

inputsStreamReader
Buffere X iin
boolear dQu it
String line
List

try |

whi le

false
null

result new ArraylList ()
(!'hasBequested(mit) |

line stdin. readli

OException e
err.printl

finally |
display(fBYE)
shutdown(stdin)
}

PR IVATI
private static final String fBYI

private
-
o L
[e J

* Display some text.to .stdout

*

param aText must have a toString mej

tlj
private void display(¢

tem. out; print (.

System. oub f lush()

n a multi-tasking environment, having multiple threads
helps the programmer to create efficient programs. In the
context of Java, thread means two different things:
* An instance of java.lang.Thread
= Athread of execution
An instance of a thread is just an object like any other
object in Java. It has variables and methods, and lives and
dies on the heap, but a thread of execution is an individual
process (a lightweight process) that has its own stack. In
Java, there is one thread per stack or vice versa. Even if
you don’t create any thread in your program, there is a
thread running in your program, by default, which is called
the Main thread. The main() function of Java or the starting
point of a Java program runs in the Main thread, or we
can say that the Main thread controls the execution of the
main() function of a Java program.

)
input to finterpreter

new InpulStreamReader |

Input(1

Interpreter fInterpreter (. pe

and’ display

tem, in)

new. Buf feredReader (inputStreamReader

"out " parameter

result)

List aText) |
aText . iterator()
wmasHext()) |

er.next())

Why we need threads

In Java, a thread is required to fulfil the purpose of multi-tasking.
When we have to perform multiple tasks simultaneously, we
need multi-threading. There are two types of threads in Java:

= User thread: This is created by the Java programmer or
user. Once all the user threads are complete, the JVM will
shut down regardless of the state of any daemon threads.
Daemon thread: This is created by the operating system.
The JVM doesn’t care about the completion of the
daemon thread. The best example of a daemon thread is
the garbage collector. The Java garbage collector is started
by the JVM once any program completes its execution.

Thread implementation in Java
There are two ways to implement threads in Java.
Extending the thread class: We can create a thread

28 | FEBRUARY 2015 | OPEN SOURCE FOR YOU | www.OpenSourceForU.com

Waiting

Runnable Running

© -

Figure 1: Life cycle of a thread

object in Java by extending the thread class of the java.lang
package. For example:

class MyThread extends Thread{
public void run(){// line 2
System.out.println(“Thread run method”);// line 3

}

public static void main(String[] args){

MyThread t = new MyThread();// line 6
t.start();// line 7

In the above code, at line number 6, we have created a
thread object. The run() method in the above code is a pre-
defined method and it is present inside the java.lang.Thread
class. In line number 7, when we say t.sart(), it actually calls
the run() method and hence the output of the program is
“Thread run method” (line number 3).

Implementing the Runnable interface:
class MyRunnable implements Runnable{

public void run(){// line 2
System.out.println(“Runnable run method”);// line 3

public static void main(String [] args){

MyRunnable r = new MyRunnable();// line 6
Thread t = new Thread(r);// line 7
t.start();// line 8

In the above code, you can see how it differs from
extending a thread class. Here, at line number 6, we have
created an object of the MyRunnable class, which is not a
thread object but just an object of a class that implements
the Runnable interface; hence, the object becomes Runnable.
Now, since the object ‘r’ is Runnable, we can pass this
object to a thread class constructor at line number 7 and,

Insight

finally, once the thread object is created at line number 7,
we call the start() method to start the thread that eventually
gives the call to the run() method. And the output is
“Runnable run method” (line 3).

=

a Note: We prefer implementing the Runnable interface over
extending the thread class for thread implementation in Java,
because the interface promotes multiple inheritance in Java.

Life cycle of a thread

Let us go over the above thread’s life cycle diagram (Figure

1), step by step:

1. New: The thread reaches this when we create the object of
the thread. A thread is not considered alive at this state.

2. Runnable: Runnable means the thread is eligible to run
but until the scheduler selects the thread to run, it can’t
run. A thread enters into this state when the start() method
is invoked. A thread can also enter into this stage after
running and in the blocked state. A thread is considered
alive in this state.

3. Running: This is the state where the thread is
actually performing the task. The thread comes into
this state when the CPU scheduler selects the thread
and makes it run. There are several ways to get to the
runnable state, but there is only one way to get into
the running state.

4. Waiting/Blocked/Sleeping: In these states, the thread is
not eligible to run but it is still alive. From this state,
the thread may return to the runnable state and further,
it may go to the running state. The thread comes into
this state when we call the sleep(),wait() and yield()
methods.

5. Dead: A thread comes in this state when the run() method
finishes its execution. Once a thread is dead, it can’t be
started again; so if you try to invoke the start() method
again, it will give you an exception.

Naming a thread
There are various ways to name a Java thread.
1. By using the thread class constructor:

public Thread(String)
public Thread(Runnable, String)

class MyThread extends Thread{
public void run(){

System.out.println(Thread.currentThread().getName());

public MyThread(String name){
super(name);// line 6

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | FEBRUARY 2015 | 29

Insight

public static void main(String[] args){

MyThread t = new MyThread(“Vikas”);// line 9
t.start();

In the above code, we have used the thread class
constructor that takes java.lang.String as a parameter (line
number 9). This gives a call to the constructor at line number
6, which further sets the name to the super class thread
constructor. The output of the program is “Vikas”.

class MyRunnable implements Runnable{
public void run(){
System.out.println(Thread.currentThread().getName());
public static void main(String[] args){

MyRunnable r = new MyRunnable();

KNOW THE MARKET
BUY & SELL PRODUCTS
FIND A CHANNEL PARTNER
KNOW THE TRENDS
All this and more in...

India's First Electronics Sourcing Magazine

DON'T MISS THESE FEATURES ‘]
o Latest Products « Business Potential

. hnologies « Emerging Sectors
. #?;zﬂ:ec noed « Whats In, What's Out

o Latest Innovations
These will help you take the right business decisions

So don't miss out on any of the issues
SUBSCRIBE IT AND GET HEAVY DISCOUNT

FAX +91-011-26817563, 26812312
WEBSITE www.eb.efyindia.com

CALL +91-011-26810601/02/03
EMAIL myeb@efyindia.com

: EFY ENTERPRISES PVT LTD
D-87/1, Okhla Industrial Area, Phase-1, New Delhi-110020

Thread t = new Thread(r, “vikas”);// line 7
t.start();

In the above code, we are trying to set the name of
the thread at line number 7, which takes two parameters,
MyRunnable object and the java.lang.String object. The
output of the code is “Vikas”.

2. By the setName() method of the thread class:

Class MyThread extends Thread{
public void run(){

System.out.println(Thread.currentThread().getName());

Public static void main(String[] args){

MyThread t = new MyThread();
t.setName(“vikas”);// line 7
t.start();

In the above code we are trying to set the name of the
thread at line number 7 by using the setName() method of
thread class. The output of the code is “Vikas™.

To summarise, a thread is a Java class that is present
inside the java.lang package. There is one thread per call
stack and vice versa. Every Java program has a thread
running by default and it is called the Main thread, which
controls the main() function of the Java program. There are
two types of threads in Java — one is the user thread and the
other is the daemon thread. The best example of a daemon
thread is the garbage collector. The user thread is created
by the programmer and when its execution is complete, the
daemon thread is invoked by the JVM. Each Java thread
has five life cycle states (Figure 1). A Java programmer can
name a thread by using the thread class constructor and the

setName() method of the thread class. Eli# ¥

By: Vikas Kumar Gautam

The author is a mentor at Emertxe Information Technology (P)
Ltd. His main areas of expertise include application development
using Java/J2EE and Android for both Web and mobile devices.
A Sun Certified Java Professional (SCJP), his interests include
acquiring greater expertise in the application space by learning
from the latest happenings in the industry. He can be reached at
vikash_kumar@emertxe.com

30 | FEBRUARY 2015 | OPEN SOURCE FORYOU | www.OpenSourceFarl.com

