
DevelopersInsight

a. System class loader: System class loader maps the class-
path environment variables to load the byte code.

b. Extension class loader: Extension class loader loads the
byte code from jre/lib/ext.

c. Bootstrap class loader: The bootstrap class loader loads
the byte code from jre/lib.
Method area: The method area (or class area) stores the

structure of the class once it is loaded by the class loader. The
method area is very important; it does two things once the
class is stored in this area:
a.	 Identification: All static members (variable, block,

method, etc) are identified from top to bottom.
b. Execution: Static variables and static blocks are executed

after the identification phase, and static methods are
executed when they are called out. Once all static
variables and blocks are executed, only then will the static
method be executed.
Heap area: The heap area stores the object. Object

instances are created in this area. When a class has instance
members (instance variable, instance method and instance
block), these members are identified and executed only when
the instance is created at the heap area.

Java stacks
In the Java stack area, two threads (main thread and garbage
collector) are always running. When the user creates any new
thread, it becomes the third thread (Thread-0). When the user
creates any method, it is executed by the main thread, inside a
stack frame (Figure 4). Each method gets its own stack frame to
execute. The stack frame has three sections – the local variable

A virtual machine, or virtualisation, has emerged as a
key concept in operating systems. When it comes
to application programming using Java, platform-

independent value addition is possible because of its ability
to work across different operating systems. The Java Virtual
Machine (JVM) plays a central role in making this happen.
In this article, let us delve deep into the architectural details
of JVM to understand it better.

Building basics
Let us build our basics by comparing C++ and a Java program
with a simple diagram (Figure 1). The C++ compiled object
code is OS-specific, say an x86-based Windows machine.
During execution, it will require a similar OS, failing which
the program will not run as expected. This makes languages
like C++ platform- (or OS) dependent. In contrast, Java
compilation produces platform-independent byte code, which
will get executed using the native JVM. Because of this
fundamental difference, Java becomes platform-independent,
powered by JVM.

Exploring JVM architecture
Fundamentally, the JVM is placed above the platform and
below the Java application (Figure 2).

Going further down, the JVM architecture pans out as shown
in Figure 3. Now let us look into each of the blocks in detail.

In a nutshell, JVM architecture can be divided into two
different categories, the details of which are provided below.

Class loader subsystem: When the JVM is started, three
class loaders are used.

Java Virtual Machine (JVM)
Delving Deep into its Architecture
A Java Virtual Machine can be thought of as an abstract computer that is defined by
certain specifications. The author leads readers deep into the architectural details of
JVM to give them a better grasp of its concepts.

PB | DecemBeR 2014 | OPeN SOURce FOR YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPeN SOURce FOR YOU | DecemBeR 2014 | 55

Developers Insight

storage section, the instruction storage section and memory
slots to perform operations. Each memory slot inside the stack
frame is, by default, of 4 bytes, but according to the size of the
variable, the size of the slot also shrinks or expands.

According to Figure 4, the addition of a 2-byte variable
(a and b) will not result in a byte because the default size
of the stack frame memory slot is 4 bytes, which can’t be
inserted into the byte (r) variable; so we need to typecast it
as (r = (byte)a+b).

The PC register: The program counter (PC) register
contains the address of the Java virtual machine instruction
currently being executed.

Native method stacks: All the native methods are
executed in this area.

Execution engine: All executions happening in JVM are
controlled by the execution engine.

Native method interface: Java Native Interface (JNI)
enables the Java code running in JVM to call and be called by
the native application and libraries (Native Method Libraries)
written in other languages such as C and C++.

JVM in action
Now let us take a look at a few Java code snippets and
understand the role of various JVM components, during
execution.

Example 1 (when all members are static): To
understand this example, the method area is explained
earlier in this article. According to the method area, all static
members of a class are identified and executed in the same
order in which they appear. When all static members are
executed, only then is the main function executed.

class Test{

 static int a =m1();

 static{

 System.out.println (“in static block”);

 }

 public static int m1(){

 System.out.println(“in m1”);

 return 10;

 }

 public static void main(String[] args){

 System.out.println(“in main”);

 }

Figure 1: Differences in C++ and Java compilation
Figure 2: How JVM fits between the OS and Java application

Figure 3: Architecture of JVM

Figure 4: Architecture of the stack frame

C++ program

Java program

Compiler (c++)

Compiler (java)

Object file
(Platform

dependent)

Byte code (Platform
independent)

Java Application

Operating System

JVM

Local Variable Storage Area
[byte a = 10, byte b = 20, byte r = 0]

Instruction Storage Area
[r = a + b]

10

20

30

Class Files
(Java Byte Code)

Class Loader
Sub-System

Method
Area

Heap

Runtime Data Area

Execution
Engine

Java
Stacks PC

Registers
Native
Method

Area

Native
Method

Interface

Native
Method

Libraries

}

The output of the above program is:

in m1

in static block

in main

Example 2 (in case of inheritance): To understand this
example, you need to understand the method area as well as
Example 1. In this example, we are trying to explain that,
when a class is inherited from any other class, the static
members are identified and executed from the top to the
bottom or from parent class to child class, and the main
function will be executed at the end.

class Vehicle{

 static int a = m1();

 public static int m1(){

56 | DecemBeR 2014 | OPeN SOURce FOR YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPeN SOURce FOR YOU | DecemBeR 2014 | 57

DevelopersInsight

 System.out.println(“in m1”);

 return 10;

 }

 static{

 System.out.println(“Vehicle static block”);

 }

}

class Car extends Vehicle{

 static int b = m2();

 public static int m2(){

 System.out.println(“in m2”);

 return 10;

 }

 static{

 System.out.println(“Car static block”);

 }

 public static void main(String[] args){

 System.out.println(“in main”);

 }

}

The output of the above code is:

in m1

Vehicle static block

In m2

Car static block

in main

The above output clarifies one thing—that the order of
identification and the execution of static members in case of
inheritance will occur from top to bottom or from parent class
to child class.

Example 3 (when members are static, non-static and
constructor): In this example, the effect of the heap area
on the Java program is explained (the heap area itself has
been covered earlier in the article). All the Java objects and
instance members are initialised here. The method area is
about static members and the heap area is about object and
non-static members. In the heap area, when the Java objects
are created, only then is the instance variable identified and
executed. The constructors are executed in the end.

class Test{

static int a=m1();

int b=m2();

{

 System.out.println(“instance block”);

}

public int m2(){

 System.out.println(“in m2”);

 return 10;

}

static {

 System.out.println(“in static block”);

}

public static int m1(){

 System.out.println(“in m1”);

 return 15;

}

public Test(){

System.out.println(“in constructor”);

}

public static void main(String[]args){

 System.out.println(“in main”);

 Test t = new Test();

}

}

The output of the above code is:

in m1

in static block

in main

in m2

instance block

in constructor

The above output clarifies the following three points:
1. The static member is both identified as well as executed

first.
2. Instance members (non-static variables and non-static

methods) are identified and executed only if the instance
is created, and the order of identification and execution
will be from top to bottom.

3. Constructors are always executed last.
The Java programming language becomes

platformindependent because of JVM and the nature of
its byte code. Because of this, Java has scaled across
multiple machines, platforms and devices, powering
enterpriseclass Web applications as well as consumer
mobile applications. The architecture of JVM has a
significant effect on a Java program. Both static and
non-static members of a Java class are treated differently
by JVM (examples 1 and 3). Static members of a class
are identified and executed as soon as the class is loaded.
Non-static members are identified and executed only if
the instance of the class is created.

By: Vikas Kumar Gautam

The author is a mentor at Emertxe Information Technology (P)
Ltd. His main areas of expertise include application development
using Java/J2EE and Android for both Web and mobile devices.
A Sun Certified Java Professional (SCJP), his interests include
acquiring greater expertise in the application space by learning
from the latest happenings in the industry. He can be reached at
vikash_kumar@emertxe.com

56 | DecemBeR 2014 | OPeN SOURce FOR YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPeN SOURce FOR YOU | DecemBeR 2014 | 57

