Insight

A Subtle Difference in C Programming

Aimed at those new to C programming, this article clears up the confusion between the
terms used in it, with illustrative examples.

ointers have always been a complex topic to understand

for those new to C programming. There will be more

confusion for newbies when these terms are used along
with some qualifiers like const in C programming,. In this article,
I will focus on the difference between the ‘pointers to constant’
and ‘constant pointers’ in order to make the concepts very clear.

Y

£ J Note: The code snippets provided here have been

tested with the GCC compiler [gcc version 4.8.2] running
under the Linux environment.

Pointer to constant

As the name itself indicates, the value of the variable to which
the pointer is pointing, is constant. In other words, a pointer
through which one cannot change the value of the variable to
which it points is known as a pointer to constant.

LJ Note : These pointers can change the address they point to
but cannot change the value at the address they are pointing to.

lllustration 1

Let us consider the code snippet given below to understand

Table 1: Syntax to declare the pointer to constant

Syntax

Example

const <type of pointer>*<pointer name> | const int*ptr

OR

<type of pointer>const*<pointer name> | int const*ptr

how pointer to constant works:

1 #include <stdio.h>

2

3 int main()

44

5 //Definition of the variable

6 int a = 10;

7

8 //Definition of pointer to constant

9 const int* ptr = &a; //Now, ptr is pointing to
the value of the variable ‘a’

10

11 *ptr = 30; //Error: Since the value is constant

12

13 return 0;

14 }

www.OpenSourceForU.com | OPEN SOURCE FOR YOU | DECEMBER 2014 | 39

nsight

In the above code, in Line No. 11, we are trying to
change the value of the variable to which the pointer is
‘pointing to’, but this is not possible since the value is
constant. When the above code is compiled and run, we get
the output shown in Figure 1.

lllustration 2
Now, let’s use the same example given in Illustration 1 to show
that the ‘address’ that the pointer contains is not a constant.

patyafisatya:-5 goc pointer_const.c
pointer_const.c: In function ‘main’:
pointer_const.c:12:2: error: assignment of read-only location “*ptr’

*ptr = 3@; //Errer : Since, the polnter pelnting to the value is constant.
-

satyagsatya:~5 [l

a b
XXXX yyyy
OK
ptr
7777

Figure 4: Pictorial representation of ‘constant pointer’

Table 2: Pointer to constant concept

Pointer to
constant

Value change

Const int*ptr; | Not possible Possible

Figure 1: Output of the code snippet given in lllustration 1

1 #include <stdio.h>

2

3 int main()

4{

5 //Definition of the variables

6 int a = 10;

7 int b = 20;

8

9 //Definition of pointer to constant

10 const int* ptr = &a; //Now, ptr is pointing to
the value of the variable ‘a’

11

12 ptr = &b; // Works: Since pointer is not constant
13

14 return 0;

16 }

From Illustrations 1 and 2, one can understand that the
‘address’ that the pointer contains can be changed but not
the value to which the pointer is ‘pointing to’. This can be
clearly understood by the pictorial representations given in
Figures 2, 3 and 4.

Constant pointers

A‘constant pointer’ is one that cannot change the address it
contains. In other words, we can say that once a constant pointer
points to a variable, it cannot point to any other variable.

a b a b
30
XXXX yyyy XXXX yyyy
NOT OK
ptr ptr
222z 777z

Figure 2: Pictorial representation of
‘pointer to constant’

Figure 3: Output of the code snippet
given in lllustration 3

E] .
¢ /| Note: However, these pointers can change the value
of the variable they ‘point to’ but cannot change the address
they are ‘holding’.
Table 3: Showing how to declare ‘constant pointer’
Syntax Example

<type of pointer>*const <pointer name> | int*const ptr

Table 4: Constant pointer concept

Address
change

Pointer to
constant

Value change

int‘const ptr; | Possible Not possible

Table 5: Summary

Example Value constant Pointer constant

char*ptr No No
const char*ptr Yes No
char*const ptr No Yes
const char*const ptr Yes Yes

lllustration 3
Let us consider the following code snippet to understand
how‘constant pointer’ works:

1 #include <stdio.h>

2

3 int main()

4{

5 //Definition of the variable

6 int a = 10;

7 int b = 20;

8

9 //Definition of pointer to constant

10 const int* ptr = &a;//Now, ptr is pointing to the
value of the variable ‘a’

11

12 *ptr = 30; // Works,since the pointer pointing to

40 | DECEMBER 2014 | OPEN SOURCE FORYOU | www.OpenSourceForU.com

Table 6: Summary without asterisk

Insight

Example Part Before Part After Comments
Asterisk Asterisk
const char*ptr const ptr Const is associated with data type, so value is constant

char const*ptr

char const ptr

Const is associated with data type, so value is constant

char*const ptr char

const ptr

Const is associated with pointer, so pointer is constant

const char*const ptr

const char

const ptr

Const is associated with both data type & pointer so both are constant

satya@satya: ~

Eatya@satya:-$ gec pointer_const.c
i In function ‘main’:

ointer:const.c:m:z: error: assignment of read-only variable ‘ptr’
ptr = &b; /f/Error :Now, ptr is pointing to value of the variable 'b’

satyapsatya:~3% I

Figure 5: Output of the code snippet shown in lllustration 3

a b

XXXX Yyyy

ptr

7777
Fig 6: int* const ptr=_&a;

b

yyyy

a
(30

XXXX

2277
Fig 7: int* const ptr=&a;
*ptr=30; //works

satysgsatya: -

STRLEN(3) Anux Pregraemer ‘s Manual STRLEM{3}
HAME

strles - calculate the Length of a string

SYNOPSIS
#lnclede «string.hs

stze_t strien(const char *5);

lpEscrIPT IO
The strien{) functlon calculates the length of the string 5, excluding
the ternleatlog mll byte (*10').

e vavue
The stries() function returns the number of bytes in the string 5.

Figure 6: Pictorial representation of
constant pointer usage

b
(20)
yyyy

ptr

7272727
Fig 8: int* const ptr=&a;

(7o)

XXXX

ptr=&b; //Error, Since address is constant

Figure 8: Pictorial representation
showing constant pointer value can-
not be changed

Figure 7: Pictorial representation show-
ing value contained in the variable can
be changed through the constant pointer

the value is not constant

13

14 ptr = &b; //
Error:Now, ptr is pointing to
the value of the variable ‘b’
15

16 return 0;

17

18 }

From the above example

(Illustration 3), it is clear that

in Line No 14 we tried to change the address of the pointer
ptr to some other variable, but it is not possible. The output
of the code snippet shown in Illustration 3 is given in Figure
5. Similarly, one can observe that in Line No 12, we are
trying to change the value of the variable it is ‘pointing to’,

which is possible.

This can be clearly understood by the pictorial
representations given in Figures 6, 7 and 8.

Can we have both pointer to constant and constant pointer

in a single statement?

Usage

We can find ‘n” number of uses of these concepts in C
as well as in the embedded C programming world. One

Figure 9: Shows the usage of pointer to constant in strlen() library function

satyagastys -

20 o
S TROWA(3] Lirux Programmer’s Manual STREMPL 3}

[HAME
Stremp, SEFMERp - compare two strisgs

SYNDPS TS
Finclude <sTring.hs

st stremplesnst char =31, const char *32);
Aat strncmp(const char *sl, conet char *52, size_t 0);

[DESCATPTION
The stremp() function compares the teo strisgs 5l and 52. It returns an integer less than, equal to,
of greater than rero if 31 is found, respectively, to be less than, to match, or be greater than si.
The stracmp() Tunction is similar, except Lt conperes the only TArSt (at most) n bytes of sl and s2.

The atrenpl) and stracmpl(l functioss return aa integer less than, cqual te, o greater than zers Af a1
{er the first p bytes thersof} is found, respectively, to be less than, to match, or be greater than
a2

Figure 10: Shows the usage of pointer to constant in stremp() library function

such simple use of ‘pointer to constant’ is to find the string
length of the given string without any attempt to modify the
original string as shown in Example 1 (Figure 9). Example
2 gives an idea of using ‘pointer to constant’ in the strcmp()
function (Figure 10).

A trick

There is a small trick to understand the difference between
‘pointer to constant’ and ‘constant pointers’ which is shown
in Table 6.

E] e e §

¢ /| Note: This trick is for all those new to the C
programming world, who are confused with constant
and pointers.

From the summary shown in Table 5, separate the part
before asterisk(*) and the part after the asterisk(*) as given
in Table 6, to clearly understand whether ‘data’ is constant
or ‘pointer’ is constant. [END il

.
==

By: Satyanarayana Sampangi

The author is a member - Embedded software at Emertxe
Information Technologies (http://www.emertxe.com). His area of
interest lies in embedded C programming combined with data
structures and microcontrollers. He likes to experiment with C
programming and open source tools in his spare time to explore
new horizons. He can be reached at satya@emertxe.com

www.0OpenSourceForU.com | OPEN SOURCE FORYOU | DECEMBER 2014 | 41

http://www.emertxe.com/
mailto:satya@emertxe.com

