
Real-­‐Time	
 Scheduling	

Chenyang	
 Lu	

CSE	
 467S	
 Embedded	
 Compu5ng	
 Systems	

Readings	

Ø  Single-Processor Scheduling: Hard Real-Time Computing Systems, by G.

Buttazzo. 	

q  Chapter 4 Periodic Task Scheduling	

q  Chapter 5 (5.1-5.4) Fixed Priority Servers	

q  Chapter 7 (7.1-7.3) Resource Access Protocols	

	

Ø  Optional further readings	

q  A Practitioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic

Analysis for Real-Time Systems, by Klein et al.	

q  Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms, by
Stankovic et al. 	

Real-­‐Time	
 Scheduling	

Ø What are the optimal scheduling algorithms?	

Ø How to assign priorities to processes?	

Ø Can a system meet all deadlines?	

Benefit	
 of	
 Scheduling	
 Analysis	

VEST (UVA) Baseline (Boeing)

Design – one processor 40 Design – one processor 25

Implementation – one processor 75

Scheduling analysis - MUF × 1 Timing test × 30

Design - two processors 25 Design - two processors 90

Implementation – two processors 105

Scheduling analysis - DM/Offset √ 1 Timing test √ 20

“Implementation” 105

Total composition time 172 Total composition time 345

• Schedulability analysis reduces development time by 50%!	

• Reduce wasted implementation/testing rounds 	

• Analysis time << testing	

• More reduction expected for more complex systems	

→ Quick exploration of design space!	

J.A.	
 Stankovic,	
 et	
 al.,	
 VEST:	
 An	
 Aspect-­‐Based	
 Composi5on	
 Tool	
 for	
 Real-­‐Time	
 Systems,	
 RTAS	
 2003.	
 	

Consequence	
 of	
 Deadline	
 Miss	

Ø Hard deadline	

q System fails if missed.	

q Goal: guarantee no deadline miss.	

Ø Soft deadline	

q User may notice, but system does not fail.	

q Goal: meet most deadlines most of the time.	

Comparison	

Ø General-purpose systems	

q Fairness to all tasks (no starvation)	

q Optimize throughput	

q Optimize average performance	

Ø Embedded systems	

q Meet all deadlines.	

q Fairness or throughput is not important	

q Hard real-time: worry about worst case performance	

Chenyang Lu	

 6	

Terminology	

Ø  Task	

q  Map to a process or thread	

q  May be released multiple times 	

Ø  Job: an instance of a task	

Ø  Periodic task 	

q  Ideal: inter-arrival time = period	

q  General: inter-arrival time >= period	

Ø Aperiodic task	

q  Inter-arrival time does not have a lower bound	

Chenyang Lu	

 7	

Timing	
 Parameters	

Ø  Task Ti	

q  Period Pi	

q  Worst-case execution time Ci	

q  Relative deadline Di	

Ø  Job Jik	

q  Release time: time when a job is ready	

q  Response time Ri = finish time – release time	

q  Absolute deadline = release time + Di	

Ø A job misses its deadline if	

q  Response time Ri > Di	

q  Finish time > absolute deadline	

Chenyang Lu	

 8	

Example	

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	

Chenyang Lu	

 9	

Metrics	

Ø A task set is schedulable if all jobs meet their deadlines.	

Ø Optimal scheduling algorithm	

q  If a task set is not schedulable under the optimal algorithm, it is not

schedulable under any other algorithms.	

Ø Overhead: Time required for scheduling.	

Chenyang Lu	

 10	

Scheduling	

Single	
 Processor	

OpCmal	
 Scheduling	
 Algorithms	

Ø  Rate Monotonic (RM)	

q  Higher rate (1/period) à Higher priority	

q  Optimal preemptive static priority scheduling algorithm	

Ø  Earliest Deadline First (EDF)	

q  Earlier absolute deadline à Higher priority	

q  Optimal preemptive dynamic priority scheduling algorithm	

Chenyang Lu	

 12	

Example	

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	

Chenyang Lu	

 13	

AssumpCons	

Ø  Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø  Relative deadline = period.	

Ø No priority inversion. 	

Ø  RM and EDF have been extended to relax assumptions.	

Chenyang Lu	

 14	

•  Utilization of a processor:	

	

	
 	

–  n: number of tasks on the processor.	

•  Utilization bound Ub: All tasks are guaranteed to be
schedulable if U ≤ Ub.	

•  No scheduling algorithm can schedule a task set if U>1	

–  Ub ≤ 1	

–  An algorithm is optimal if its Ub = 1	

Schedulable	
 UClizaCon	
 Bound	

1

n
i

i i

CU
P=

=∑

Chenyang Lu	

 15	

RM	
 UClizaCon	
 Bound	

Ø Ub(n) = n(21/n-1)	

q  n: number of tasks	

q  Ub(2) = 0.828	

q  Ub(n) ≥ Ub(∞) = ln2 = 0.693	

Ø U ≤ Ub(n) is a sufficient condition, but not necessary.	

Ø Ub = 1 if all task periods are harmonic	

q  Periods are multiples of each other	

q  e.g., 1,10,100	

Chenyang Lu	

 16	

ProperCes	
 of	
 RM	

Ø  RM may not guarantee schedulability even when CPU is not
fully utilized.	

Ø  Low overhead: when the task set is fixed, the priority of a task
never changes.	

Ø  Easy to implement on POSIX APIs.	

Chenyang Lu	

 17	

EDF	
 UClizaCon	
 Bound	

Ø Ub = 1	

Ø U ≤ 1: sufficient and necessary condition for schedulability.	

Ø Guarantees schedulability if CPU is not over-utilized.	

Ø Higher overhead than RM: task priority may change online.	

Chenyang Lu	

 18	

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Ø What if relative deadline < period?	

Chenyang Lu	

 19	

OpCmal	
 Scheduling	
 Algorithms	

RelaCve	
 Deadline	
 <	
 Period	

Ø Deadline Monotonic (DM)	

q  Shorter relative deadline à Higher priority	

q  Optimal preemptive static priority scheduling	

Ø  Earliest Deadline First (EDF)	

q  Earlier absolute deadline à Higher priority	

q  Optimal preemptive dynamic priority scheduling algorithm	

Chenyang Lu	

 20	

•  Sufficient but pessimistic test	

•  Sufficient and necessary test: response time analysis	

DM	
 Analysis	

1/

1
(2 -1)

n
ni

i i

C n
D=

≤∑

Chenyang Lu	

 21	

•  Works	
 for	
 any	
 fixed-­‐priority	
 preemp5ve	
 scheduling	
 algorithm.	

•  Cri5cal	
 instant	

–  results	
 in	
 a	
 task’s	
 longest	
 response	
 5me.	

–  when	
 all	
 higher-­‐priority	
 tasks	
 are	
 released	
 at	
 the	
 same	
 5me.	

•  Worst-­‐case	
 response	
 5me	

–  Tasks	
 are	
 ordered	
 by	
 priority;	
 T1	
 has	
 highest	
 priority	

Response	
 Time	
 Analysis	

1

1

i
i

i i j
j j

RR C C
P

−

=

⎡ ⎤
= + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑

Chenyang Lu	

 22	

Tasks	
 are	
 ordered	
 by	
 priority;	
 	

T1	
 has	
 the	
 highest	
 priority.	

	

for	
 (each	
 task	
 Tj)	
 {	

	
 I	
 =	
 0;	
 R	
 =	
 0;	

	
 while	
 (I	
 +	
 Cj	
 >	
 R)	
 {	

	
 	
 R	
 =	
 I	
 +	
 Cj;	

	
 	
 if	
 (R	
 >	
 Dj)	
 return	
 UNSCHEDULABLE;	

	

	

	
 	

	
 }	

}	

return	
 SCHEDULABLE;	

Response	
 Time	
 Analysis	
 	

⎡ ⎤
⎢ ⎥
⎢ ⎥

∑
j-1

kk=1
k

R
I= C ;

P

Chenyang Lu	

 23	

Example	

Ø  P1 = D1 = 5, C1 = 2; P2 = D2 = 7, C2 = 4.	

Chenyang Lu	

 24	

EDF:	
 Processor	
 Demand	
 Analysis	

i

n

i i
P C

P
LLC ∑

=
⎥
⎦

⎥
⎢
⎣

⎢
=

1
),0(

Chenyang Lu	

 25	

•  To start, assume Di = Pi	

•  Processor demand in interval [0, L]: total time needed for
completing all jobs with deadlines no later than L.	

•  Theorem: A set of periodic tasks is schedulable by EDF if
and only if for all L ≥ 0:	

•  There is enough time to meet processor demand at every
time instant.	

Schedulable	
 CondiCon	

∑
=

⎥
⎦

⎥
⎢
⎣

⎢
≥

n

i
i

i

C
P
LL

1

Chenyang Lu	

 26	

•  End at the first time instant L when all the released jobs are
completed	

•  W(L): Total execution time of all tasks released by L.	

	

Busy	
 Period	
 Bp	

})(|min{

)(
1

LLWLB

C
P
LLW

p

i

n

i i

==

⎥
⎥

⎤
⎢
⎢

⎡
=∑

=

Chenyang Lu	

 27	

ProperCes	
 of	
 Busy	
 Period	

Chenyang Lu	

 28	

•  CPU is fully utilized during a busy period.	

•  The end of a busy period coincides with the beginning

of an idle time or the release of a periodic job.	

•  All tasks are schedulable if and only if	

	

at all job release times before min(Bp, H)	

Schedulable	
 CondiCon	

∑
=

⎥
⎦

⎥
⎢
⎣

⎢
≥

n

i
i

i

C
P
LL

1

Chenyang Lu	

 29	

Compute	
 Busy	
 Period	

busy_period	

{	

H	
 =	
 lcm(P1,…,Pn);	
 /*	
 least	
 common	

multiple	
 */	

L	
 =	
 ∑Ci;	

L'	
 =	
 W(L);	

while	
 (L'	
 !=	
 L	
 and	
 L'	
 <=	
 H)	
 {	

	
 	
 L	
 =	
 L';	

	
 	
 L'	
 =	
 W(L);	

}	

if	
 (L'	
 <=	
 H)	
 	

	
 Bp	
 =	
 L;	
 	

else	
 	

	
 Bp	
 =	
 INFINITY;	

} 	
 	

Chenyang Lu	

 30	

•  A set of periodic tasks with deadlines no more than than
periods is schedulable by EDF if and only if	

where D = {Di,k | Di,k = kPi+Di, Di,k ≤ min(Bp, H), 1≤i≤n, k≥0}.	

	

•  Note: only need to test all deadlines before min(Bp,H).	

Processor	
 Demand	
 Test:	
 Di	
 <	
 Pi	
 	

1
, 1

n
i

i
i i

L DL D L C
P=

⎡ ⎤⎛ ⎞⎢ ⎥−
∀ ∈ ≥ +⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦

∑

Chenyang Lu	

 31	

Schedulability	
 Test	
 Revisited	

D = P	

 D < P	

Static Priority	

 RM	

Utilization bound	

Response time	

	

DM	

Response time	

Dynamic Priority	

 EDF	

Utilization bound	

EDF	

Processor demand	

	

Chenyang Lu	

 32	

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Chenyang Lu	

 33	

QuesCons	

Ø What causes priority inversion?	

Ø How to reduce priority inversion?	

Ø How to analyze schedulability?	

Chenyang Lu	

 34	

Priority	
 Inversion	

Ø A low-priority task blocks a high-priority task.	

Ø  Sources of priority inversion	

q  Access shared resources guarded by semaphores.	

q  Access non-preemptive subsystems, e.g., storage, networks.	

Chenyang Lu	

 35	

Semaphores	

Ø OS primitive for controlling access to shared variables.	

q  Get access to semaphore S with wait(S).	

q  Execute critical section to access shared variable.	

q  Release semaphore with signal(S).	

Ø Mutex: at most one process can hold a mutex.	

Chenyang Lu	

 36	

wait(mutex_info_bus);	

Write	
 data	
 to	
 info	
 bus;	

signal(mutex_info_bus);	

What	
 happened	
 to	
 Pathfinder?	

Ø …But a few days into the mission, not long after Pathfinder
started gathering meteorological data, the spacecraft began
experiencing total system resets, each resulting in losses of
data… 	

Chenyang Lu	

 37	

Real-­‐World	
 (Out	
 of	
 This	
 World)	
 Story:	
 Priority	

inversion	
 almost	
 ruined	
 the	
 path	
 finder	
 mission	

on	
 MARS!	
 hYp://research.microso[.com/~mbj/	

Priority	
 Inversion	

Chenyang Lu	

 38	

1

4 4 4
0 2 4 6 8 10 12 14 16 18 20 22

1 1

4

critical section

T1 blocked!

Unbounded	
 Priority	
 Inversion	

Chenyang Lu	

 39	

1

4 4 4
0 2 4 6 8 10 12 14 16 18 20 22

1 1

critical section
T1 blocked by T4,T2,T3!

3

2

4 4

SoluCon	

Ø  The low-priority task inherits the priority of the blocked
high-priority task.	

Chenyang Lu	

 40	

1

4 4 4
0 2 4 6 8 10 12 14 16 18 20 22

1 1

critical section
T1 only blocked by T4

Inherit
priority 1!

2

3

4

Return to
priority 4!

Priority	
 Inheritance	
 Protocol	
 (PIP)	

Ø  When task Ti is blocked on a semaphore held by Tk	

q  If prio(Tk) is lower than prio(Ti), prio(Ti) à Tk	

Ø  When Tk releases a semaphore	

q  If Tk no longer blocks any tasks, it returns to its normal priority.	

q  If Tk still blocks other tasks, it inherits the highest priority of the
remaining tasks that it is blocking.	

Ø  Priority Inheritance is transitive	

q  T2 blocks T1 and inherits prio(T1)	

q  T3 blocks T2 and inherits prio(T1)	

Chenyang Lu	

 41	

How	
 was	
 Path	
 Finder	
 saved?	

Ø  When created, a VxWorks mutex object accepts a boolean parameter that

indicates if priority inheritance should be performed by the mutex. 	

q  The mutex in question had been initialized with the parameter FALSE.	

Ø  VxWorks contains a C interpreter intended to allow developers to type in C
expressions/functions to be executed on the fly during system debugging.	

Ø  The initialization parameter for the mutex was stored in global variables,
whose addresses were in symbol tables also included in the launch software,
and available to the C interpreter. 	

Ø  A C program was uploaded to the spacecraft, which when interpreted,
changed these variables from FALSE to TRUE. 	

Ø  No more system resets occurred. 	

Chenyang Lu	

 42	

Bounded	
 Number	
 of	
 Blocking	

Ø Assumptions of analysis	

q  Fixed priority scheduling	

q  All semaphores are binary	

q  All critical sections are properly nested 	

Ø  Task Ti can be blocked by at most min(m,n) times	

q  m: number of distinct semaphores that can be used to block Ti	

q  n: number of lower-priority tasks that can block Ti 	

Chenyang Lu	

 43	

•  A set of periodic tasks can be scheduled by RMS/PIP if	

–  Tasks are ordered by priorities (T1 has the highest priority).	

–  Bi: the maximum amount of time when task Ti can be blocked
by a lower-priority task.	

Extended	
 RMS	
 UClizaCon	
 Bound	

∑
=

−≤+≤≤∀
i

k

i

i

i

k

k i
P
B

P
Cnii

1

/1)12(,1,

Chenyang Lu	

 44	

Extended	
 Response	
 Time	
 Analysis	

1

1

i
i

i i i j
j j

RR C B C
P

−

=

⎡ ⎤
= + + ⎢ ⎥

⎢ ⎥⎢ ⎥
∑

Chenyang Lu	

 45	

•  Consider the effect of blocking on response time:	

•  The analysis becomes sufficient but not necessary. 	

Priority	
 Ceiling	

Ø C(Sk): Priority ceiling of a semaphore Sk	

q  Highest priority among tasks requesting Sk.	

Ø A critical section guarded by Sk may block task Ti only if C(Sk)
is higher than prio(Ti)	

Chenyang Lu	

 46	

Compute	
 Bi	

Assumption:	
 no	
 nested	
 critical	
 sections.	

	

/*	
 potential	
 blocking	
 by	
 other	
 tasks	
 */	

B1=0;	
 B2=0;	

for	
 each	
 Tj	
 with	
 priority	
 lower	
 than	
 Ti	
 {	

b1	
 =	
 longest	
 critical	
 section	
 in	
 Tj	
 that	
 can	
 block	

Ti	

B1	
 =	
 B1	
 +	
 b1	

}	

	

/*	
 potential	
 blocking	
 by	
 semaphores	
 */	

for	
 each	
 semaphore	
 Sk	
 that	
 can	
 block	
 Ti	
 {	

b2	
 =	
 longest	
 critical	
 section	
 guarded	
 by	
 Sk	
 among	

lower	
 priority	
 tasks	

B2	
 =	
 B2	
 +	
 b2	

}	

return	
 min(B1,	
 B2)	

Chenyang Lu	

 47	

Priority	
 Ceiling	
 Protocol	

Ø  Priority ceiling of the processor: The highest priority ceiling
of all semaphores currently held. 	

Ø A task can acquire a resource only if 	

q  the resource is free, AND 	

q  it has a higher priority than the priority ceiling of the system.	

Ø A task is blocked by at most one critical section.	

Ø Higher run-time overhead than PIP. 	

Chenyang Lu	

 48	

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Chenyang Lu	

 49	

Hybrid	
 Task	
 Set	

Ø  Periodic tasks + aperiodic tasks	

Ø  Problem: arrival times of aperiodic tasks are unknown	

Ø  Sporadic task with a hard deadline	

q  Inter-arrival time must be lower bounded	

q  Schedulability analysis: treated as a periodic task with period =

minimum inter-arrival time à can be very pessimistic.	

Ø Aperiodic task with a soft deadline	

q  Possibly unbounded inter-arrival time	

q  Maintain hard guarantees on periodic tasks	

q  Reduce response time of aperiodic tasks	

Chenyang Lu	

 50	

Background	
 Scheduling	

Ø Handle aperiodic requests with the lowest-priority task	

Ø Advantages	

q  Simple	

q  Aperiodic tasks usually has no impact on periodic tasks.	

Ø Disadvantage	

q  Aperiodic tasks have very long response times when the utilization of

periodic tasks is high.	

Ø Acceptable only if	

q  System is not busy	

q  Aperiodic tasks can tolerate long delays	

Chenyang Lu	

 51	

Polling	
 Server	

Ø  A periodic task (server) serves aperiodic requests.	

q  Period: Ps	

q  Capacity: Cs	

Ø  Released periodically at period Ps	

Ø  Serves any pending aperiodic requests	

Ø  Suspends itself until the end of the period if 	

q  it has used up its capacity, or 	

q  no aperiodic request is pending	

Ø  Capacity is replenished to Cs at the beginning of the next period	

Chenyang Lu	

 52	

Example:	
 Polling	
 Server	

Chenyang Lu	

 53	

Schedulability	

Ø  Polling server has the same impact on periodic tasks as a
periodic task.	

q  n tasks with m servers: Up + Us ≤ Ub(n+m)	

Ø Disadvantage: If an aperiodic request “misses” the server, it
has to wait till the next period. à long response time.	

Ø Can have multiple servers (with different periods) for different
classes of aperiodic requests	

Chenyang Lu	

 54	

Deferrable	
 Server	
 (DS)	

Ø  Preserve unused capacity till the end of the current period à
shorter response to aperiodic requests.	

Ø  Impact on periodic tasks differs from a periodic task.	

Chenyang Lu	

 55	

Example:	
 Deferrable	
 Server	

Chenyang Lu	

 56	

•  Under RMS	

•  As n à ∞:	

–  When Us = 0.186, min Ub = 0.652	

•  System is schedulable if	

RM	
 UClizaCon	
 Bound	
 with	
 DS	

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+

+
+= 1

12
2

/1 n

s

s
sb U

UnUU

Chenyang Lu	

 57	

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
+=

12
2ln

s

s
sb U

UUU

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+

+
≤

12
2ln

s

s
p U

UU

DS:	
 Middleware	
 ImplementaCon	

ACE Timer Queue

Kokyu Dispatching Queue

Budget
Manager
Thread

Server
Thread

Aperiodic Events

Periodic Events

Kokyu Dispatching Queue
Periodic Events

Kokyu Dispatching Queue

Dispatching
Thread

Dispatching
Thread

High Priority

Low Priority

Chenyang Lu	

 58	

•  First DS implementation on top of priority-based OS (e.g., Linux, POSIX)	

•  Server thread processes aperiodic events (2nd highest priority)	

•  Budget manager thread (highest priority) manages the budget and controls the

execution of server thread	

Budget Exhausted Timer

Replenish Timer

Y. Zhang, C. Lu, C. Gill, P. Lardieri, G. Thaker, Middleware Support
for Aperiodic Tasks in Distributed Real-Time Systems, RTAS'07.

AssumpCons	

Ø Single processor.	

Ø All tasks are periodic.	

Ø Zero context switch time.	

Ø Relative deadline = period.	

Ø No priority inversion. 	

Chenyang Lu	

 59	

Context	
 Switch	
 Time	

Ø  RTOS usually has low context switch overhead.	

Ø Context switches can still cause overruns in a tight schedule.	

q  Leave margin in your schedule.	

Ø  Techniques exist to reduce number of context switches by
avoiding certain preemptions.	

Ø Other forms of overhead: cache, thread migration, interrupt
handling, bus contention, thread synchronization…	

Chenyang Lu	

 60	

Fix	
 an	
 Unschedulable	
 System	

Ø Reduce task execution times.	

Ø Reduce blocking factors.	

Ø Get a faster processor.	

Ø Replace software components with hardware.	

Ø Multi-processor and distributed systems.	

Chenyang Lu	

 61	

Final	

Ø 1-2:30 April 21st 	

Ø Open book/note	

Ø Scope: Operating Systems, Real-Time Scheduling	

62	

Final	
 Demo	

Ø April 23rd, 1pm-2:30pm 	

Ø 20 min per team	

Ø Set up and test your demo in advance	

Ø All expected to attend the whole session	

Ø Return devices to Rahav	

Ø It’ll be fun! J	

63	

Project	
 Report	

Ø  Submit report and materials by 11:59pm April 30th.	

Ø  Email to Rahav	

Ø  Report	

q  Organization: See conference papers in the reading list.	

q  6 pages, double column, 10 pts fonts.	

q  Use templates on the class web page.	

Ø Other materials	

q  Slides of your final presentation	

q  Source code	

q  Documents: README, INSTALL, HOW-to-RUN	

q  Video (Youtube is welcome!)	

64	

Suggested	
 Report	
 Outline	

Ø Abstract	

Ø  Introduction	

Ø Goals	

Ø Design: Hardware and Software	

Ø  Implementation	

Ø  Experiments	

Ø  Related Work	

Ø  Lessons Learned	

Ø Conclusion and Future Work	

65	

Peer	
 Review	

Ø  For fairness in project evaluation.	

Ø  Email me individually by 11:59pm, April 30th 	

q  Estimated percentage of contribution from each team member.	

q  Brief justification.	

66	

