
Chapter 7 

Memory 

Management 
Eighth Edition 

William Stallings 

Operating 

Systems: 

Internals 

and Design 

Principles 

 



Frame A fixed-length block of main memory. 

Page 

A fixed-length block of data that resides in secondary memory 

(such as disk). A page of data may temporarily be copied into a 

frame of main memory. 

Segment 

A variable-length block of data that resides in secondary memory. 

An entire segment may temporarily be copied into an available 

region of main memory (segmentation) or the segment may be divided 

into pages which can be individually copied into main memory 

(combined segmentation and paging). 

 

Table 7.1   

 

Memory Management Terms  



Memory Management 
Requirements 

 Memory management is intended to satisfy the 

following requirements: 

 Relocation 

 Protection 

 Sharing 

 Logical organization 

 Physical organization 



Relocation 

 Programmers typically do not know in advance which other programs 

will be resident in main memory at the time of  execution of  their 

program 

 Active processes need to be able to be swapped in and out of  main 

memory in order to maximize processor utilization 

 Specifying that a process must be placed in the same memory          

region when it is swapped back in would be limiting 

 may need to relocate  the process to a different area                          

of  memory 



Process Control Block

Program

Data

Stack

Current top

of stack

Entry point

to program

Process control

information

Increasing

address

values

Branch

instruction

Reference

to data

Figure 7.1    Addressing Requirements for a Process



Protection 

 Processes need to acquire permission to reference memory locations for 

reading or writing purposes 

 Location of  a program in main memory is unpredictable 

 Memory references generated by a process must be checked at run time 

 Mechanisms that support relocation also support protection 

 



Sharing 

 Advantageous to allow each process access to the same copy of  

the program rather than have their own separate copy 

 Memory management must allow controlled access to shared 

areas of  memory without compromising protection 

 Mechanisms used to support relocation support sharing 

capabilities 

 



Logical Organization 

 Memory is organized as linear 

 

 

 

 

 

 

 Segmentation is the tool that most readily satisfies 
requirements 

 

Programs are written in modules 

• modules can be written and compiled independently 

• different degrees of  protection given to modules (read-only, 
execute-only) 

• sharing on a module level corresponds to the user’s way of  
viewing the problem 



Physical Organization 

Cannot leave the 
programmer with the 

responsibility to manage 
memory 

Memory available for a 
program plus its data 
may be insufficient 

overlaying allows various 
modules to be assigned 

the same region of  
memory but is time 

consuming to program 

Programmer does not 
know how much space 

will be available 



Memory Partitioning 

 Memory management brings processes into main memory for 

execution by the processor 

  involves virtual memory 

 based on segmentation and paging 

 Partitioning 

 used in several variations in some now-obsolete operating 

systems 

 does not involve virtual memory 

 

 



Technique Description Strengths  Weaknesses 

Fixed Partitioning 

Main memory is divided into a 
number of static partitions at 

system generation time. A process 
may be loaded into a partition of 

equal or greater size. 

Simple to implement; 
little operating system 

overhead. 

Inefficient use of 
memory due to internal 

fragmentation; 
maximum number of 

active processes is 
fixed. 

Dynamic Partitioning 

Partitions are created dynamically, 
so that each process is loaded into a 

partition of exactly the same size as 
that process. 

No internal 
fragmentation; more 

efficient use of main 
memory. 

Inefficient use of 
processor due to the 

need for compaction to 
counter external 

fragmentation. 

Simple Paging 

Main memory is divided into a 

number of equal-size frames. Each 
process is divided into a number of 

equal-size pages of the same length 
as frames. A process is loaded by 

loading all of its pages into 
available, not necessarily 

contiguous, frames. 

No external 

fragmentation.  

A small amount of 

internal fragmentation. 

Simple Segmentation 

Each process is divided into a 

number of segments. A process is 
loaded by loading all of its 

segments into dynamic partitions 
that need not be contiguous. 

No internal 

fragmentation; improved 
memory utilization and 

reduced overhead 
compared to dynamic 

partitioning. 

External fragmentation. 

Virtual Memory 

Paging 

As with simple paging, except that 

it is not necessary to load all of the 
pages of a process. Nonresident 

pages that are needed are brought in 
later automatically. 

No external 

fragmentation; higher 
degree of 

multiprogramming; 
large virtual address 

space. 

Overhead of complex 

memory management. 

Virtual Memory 

Segmentation 

As with simple segmentation, 

except that it is not necessary to 
load all of the segments of a 

process. Nonresident segments that 
are needed are brought in later 

automatically. 

No internal 

fragmentation, higher 
degree of 

multiprogramming; 
large virtual address 

space; protection and 

sharing support. 

Overhead of complex 

memory management. 

 

Table 7.2    

 

Memory 

Management 

Techniques  

(Table is on page 315 in textbook) 



Operating System

8M

Operating System

8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2  Example of Fixed Partitioning of a 64-Mbyte Memory



 A program may be too big to fit in a partition  

 program needs to be designed with the use of  overlays 

 Main memory utilization is inefficient   

 any program, regardless of  size, occupies an entire 

partition 

 internal fragmentation  

 wasted space due to the block of  data loaded being 

smaller than the partition 

 



Operating

System

New

Processes

New

Processes

Operating

System

Figure 7.3    Memory Assignment for Fixed Partitioning

(a) One process queue per partition (b) Single queue



 The number of  partitions specified at system 

generation time limits the number of  active 

processes in the system 

 Small jobs will not utilize partition space 

efficiently 



 Partitions are of  variable length and number 

 Process is allocated exactly as much memory as it 

requires 

 This technique was used by IBM’s mainframe 

operating system, OS/MVT 



(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4  The Effect of Dynamic Partitioning



Dynamic Partitioning 

• memory becomes more and more fragmented 

• memory utilization declines 

External Fragmentation 

• technique for overcoming external fragmentation 

• OS shifts processes so that they are contiguous 

• free memory is together in one block 

• time consuming and wastes CPU time 

Compaction 



Placement Algorithms 

Best-fit 

• chooses the 
block that is 
closest in size 
to the request 

First-fit 

• begins to scan 
memory from 
the beginning 
and chooses 
the first 
available 
block that is 
large enough  

Next-fit 

• begins to scan 
memory from 
the location 
of  the last 
placement 
and chooses 
the next 
available 
block that is 
large enough 



8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last

allocated

block (14M)

8M

12M

6M

2M

8M

6M

14M

20 M

(b) After

Next Fit

Allocated block

Best Fit

First Fit

Figure 7.5    Example Memory Configuration befor e

and after Allocation of 16-Mbyte Block

Free block

Possible new allocation



Buddy System 

 Comprised of  fixed and dynamic partitioning 

schemes 

 Space available for allocation is treated as a 

single block 

 Memory blocks are available of  size 2K words, L 

≤ K ≤ U, where  

 2L = smallest size block that is allocated  

 2U = largest size block that is allocated; generally 2U is 

the size of  the entire memory available for allocation 

 



1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6   Example of Buddy System



256K 256KD =256 KA = 128K C =64 K 64K

Figure 7.7   Tree Representation of Buddy System

1M

512K

256K

128K

64K

Leaf node for

allocated block

Leaf node for

unallocated block

Non-leaf node



Addresses 

• reference to a memory location independent of  the current 
assignment of  data to memory 

Logical 

• address is expressed as a location relative to some known 
point 

Relative 

• actual location in main memory 

Physical or Absolute 



Process Control Block

Program

Data

Stack

Figure 7.8    Hardware Support for Relocation

Comparator

Interrupt to

operating system

Absolute

address

Process image in

main memory

Relative address

Base Register

Bounds Register

Adder



 Partition memory into equal fixed-size chunks that are 

relatively small 

 Process is also divided into small fixed-size chunks of  the 

same size 

Pages  

• chunks of  a 
process 

Frames 

• available 
chunks of  
memory 



0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9   Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2



Page Table 

 Maintained by operating system for each process 

 Contains the frame location for each page in the process 

 Processor must know how to access for the current process 

 Used by processor to produce a physical address 

 

 



00
11
22
33

Process A

page table

—0
—1
—2

Process B

page table

70
81
92
103

Process C

page table

40
51
62
113
124

Process D

page table

13
14

Free frame

list

Figure 7.10  Data Structures for the Example of Figure 7.9 at Time Epoch (f)



0000010111011110

(a) Partitioning

Relative address = 1502
U

se
r 

p
ro

c
es

s

(2
7

0
0

 b
y

te
s)

0000010111011110

(b) Paging

(page size = 1K) 

Logical address =

Page# = 1, Offset = 478

Logical address =

Segment# = 1, Offset = 752

P
a
g

e 
0

P
a

g
e 

1
P

a
g

e 
2

In
te

rn
a
l

fr
a

g
m

en
ta

ti
o
n

0001001011110000

(c) Segmentation

S
eg

m
en

t 
0

7
5

0
 b

y
te

s

S
eg

m
en

t 
1

1
9

5
0
 b

y
te

s

4
7

8 7
5

2

Figure 7.11   Logical Addresses



0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12  Examples of Logical-to-Physical Address Translation

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12  Examples of Logical-to-Physical Address Translation



Segmentation 

A program can be subdivided into segments 

may vary in length 

 there is a maximum length 

Addressing consists of  two parts: 

 segment number  

 an offset 

Similar to dynamic partitioning 

Eliminates internal fragmentation 

 



Segmentation 

 Usually visible  

 Provided as a convenience for organizing programs and 

data 

 Typically the programmer will assign programs and data 

to different segments 

 For purposes of  modular programming the program or 

data may be further broken down into multiple segments 

 the principal inconvenience of  this service is that the programmer 

must be aware of  the maximum segment size limitation 



Address Translation 

 Another consequence of  unequal size segments is 
that there is no simple relationship between 
logical addresses and physical addresses 

 The following steps are needed for address 
translation: 

Extract the segment 
number as the leftmost n 
bits of  the logical address 

Use the segment number 
as an index into the 

process segment table to 
find the starting physical 
address of  the segment 

Compare the offset, 
expressed in the rightmost 
m bits, to the length of  the 
segment.  If  the offset is 
greater than or equal to 
the length, the address is 

invalid 

The desired physical 
address is the sum of  the 
starting physical address 
of  the segment plus the 

offset 



0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12  Examples of Logical-to-Physical Address Translation



Summary 

 Memory 
partitioning 

 fixed partitioning 

 dynamic 
partitioning 

 buddy system 

 relocation 

 Segmentation  

 Memory management 
requirements 

 relocation 

 protection 

 sharing 

 logical 
organization 

 physical 
organization 

 Paging  


