
'

&

$

%
Course Booklet for

LINUX Internals Programming



a1
...
an


+



b1
...
bn


=



a1 + b1
...

an + bn



Is it C or Linux?

By Emertxe
Version 2.2 (December 18, 2014)

All rights reserved. Copyright c© 2014
Emertxe Information Technologies Pvt Ltd

(http://www.emertxe.com)
Course Email: embedded.courses@emertxe.com

Emertxe Information Technologies Pvt Ltd. Copyright 2018

ii Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Contents

1 OS & LINUX Basics 1
1.1 Expectations out of this module 1
1.2 OS Basics . 2
1.3 Linux Basics . 3

1.3.1 Linux Properties . 3
1.4 Components of LINUX . 4

1.4.1 User Application . 4
1.4.2 OS Services . 4
1.4.3 Linux Kernel . 5
1.4.4 Hardware . 5

1.5 Overview of the Kernel Sturcture 6
1.5.1 Process Scheduler(SCHED) 6
1.5.2 Memory Manager (MM) 7
1.5.3 Virtual File System (VFS) 7
1.5.4 Network Interface (NET) 8
1.5.5 Inter-Process Communication (IPC) 8

1.6 Kernel Designs . 9
1.7 LINUX File System . 9

1.7.1 Ext2 File System . 9
1.7.2 FEATURES: . 9
1.7.3 Ext2 Disk Data Structures 10
1.7.4 File Types . 11
1.7.5 /proc File System . 11

2 System Calls 13
2.1 User and Kernel spaces . 13
2.2 System Calls . 14

2.2.1 System Calls and Library functions 15
2.2.2 System Calls in Detail 15
2.2.3 Tracing System Calls 16

2.3 System Call Examples . 16

iii

Emertxe Information Technologies Pvt Ltd. Copyright 2018

iv Emertxe Information Technologies Pvt Ltd

2.3.1 File Related System Call 16
2.3.2 Time Related System Calls 17
2.3.3 High Precision Sleep 17

2.4 Practice - I . 18
2.4.1 Prerequisites . 18
2.4.2 Objective . 18
2.4.3 Algorithm Design . 19
2.4.4 Dry Run . 22
2.4.5 Practical Implementation 22

2.5 List of Assignments . 23

3 Processes 25
3.1 Processes . 25

3.1.1 What is a Process? . 25
3.1.2 Process Versus Program 26

3.2 Process States . 26
3.2.1 Process state Transitions 27

3.3 Schedular . 27
3.3.1 Operations . 28

3.4 Process Descriptor/Structure 28
3.4.1 State Field . 28
3.4.2 Process ID . 30

3.5 Basic Process Management . 31
3.5.1 Viewing active process (Commands) 31
3.5.2 Getting Process ID in C-Program 32
3.5.3 Foreground and background process and killing a process 32
3.5.4 Context switch . 33
3.5.5 Process Scheduling Queues 34

3.6 Creating a Process . 35
3.6.1 system() Function . 35
3.6.2 fork()-Creating a New Process 35
3.6.3 vfork() . 36
3.6.4 exec()-Replacing Process Image 37
3.6.5 exec family . 38
3.6.6 Shortcomings of fork() and exec() 38
3.6.7 Copy-On-Write (COW) 39

3.7 Wait Family of System Calls 39
3.8 Special Case of Processes . 40

3.8.1 Zombie Process . 40
3.8.2 Orphan Process . 40

3.9 Practice - I . 41

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd v

3.9.1 Prerequisites . 41
3.9.2 Objective . 41
3.9.3 Algorithm Design . 42
3.9.4 Dry Run . 43
3.9.5 Practical Implementation 43

3.10 List of Assignments . 44

4 Signal 45
4.1 Signal . 45

4.1.1 Signal Introduction / Concepts 45
4.1.2 Where Signals Come From 46

4.2 How Programs Responds to Signals 46
4.3 Handling Signals . 47

4.3.1 Writing Your Own Signal Handler 47
4.3.2 Signal in Signal Handler 48

4.4 signal.h and Signal Related Functions 48
4.4.1 raise() . 49
4.4.2 alarm() . 49
4.4.3 pause() . 49

4.5 Signal and Interrupts . 50
4.6 Process Termination and Exit Codes 50
4.7 Practice - 1 . 50

4.7.1 Prerequisite . 50
4.7.2 Objective . 50
4.7.3 Algorithm Design . 51
4.7.4 Dry Run . 54
4.7.5 Practical Implementation 54

4.8 List of Assignments . 56

5 Threads 57
5.1 Introducation to Threads . 57

5.1.1 What is Thread . 57
5.1.2 Why Threads . 58
5.1.3 Advantages of Threads 59

5.2 Multi Threaded Environment 60
5.3 Process and Thread . 60
5.4 What is a pthread . 61
5.5 When to Use Threading . 61
5.6 Thread Creation . 62
5.7 Passing Data to Thread . 63
5.8 Returning Values From Threads 63

Emertxe Information Technologies Pvt Ltd. Copyright 2018

vi Emertxe Information Technologies Pvt Ltd

5.9 Types of Threads . 64
5.10 Thread Attributes . 65

5.10.1 Creating Detached Threads 66
5.11 Self Thread ID . 67
5.12 Thread Cancellation . 67

5.12.1 How to Cancel . 68
5.12.2 Consequence of Thread Cancellation 68
5.12.3 Controlling Cancellation 69
5.12.4 Implementing Critical Section 69

5.13 Cleanup Handlers . 70
5.14 List of Assignments . 71

6 Synchronization 73
6.1 What is Synchronization . 73
6.2 Why Synchronization . 74

6.2.1 Race Condition . 74
6.2.2 Critical Section . 74

6.3 Mutexes . 75
6.3.1 What is Mutex . 75
6.3.2 Creating / Destroying Mutexes 75
6.3.3 Locking / Unlocking Mutexes 76
6.3.4 Deadlocks and Starvation 77
6.3.5 Priority Inversion . 78
6.3.6 Types of Mutexes and Mutex Attributes 79
6.3.7 Non-Blocking Mutex Tests 79

6.4 Semaphores for Threads . 80
6.5 Practice - 1 . 81

6.5.1 Prerequisites . 81
6.5.2 Objective . 81
6.5.3 Algorithm Design . 82
6.5.4 Dry Run . 85
6.5.5 Practical Implementation 85

6.6 List of Assignments . 86

7 LINUX IPC 87
7.1 Introduction . 87
7.2 Pipe . 88

7.2.1 Creating Pipes . 88
7.2.2 Properties . 88
7.2.3 Process Communication Using Pipes 89
7.2.4 Limitations of Pipes 91

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd vii

7.3 FIFOs . 92
7.3.1 Properties . 92
7.3.2 Creating a FIFO . 92

7.4 Shared Memory . 93
7.4.1 Allocation . 93
7.4.2 Attachment and Detachment 94
7.4.3 Controlling and Deallocating Shared Memory 94

7.5 Semaphores . 95
7.5.1 Allocation . 95
7.5.2 Deallocation . 96
7.5.3 Initialization . 96
7.5.4 Wait and Post operations 97

7.6 List of Assignments . 98

8 Unix network programming 99
8.1 Introduction to sockets . 99
8.2 Client server mechanism: . 99
8.3 Structures used in socket programming: 100
8.4 The socket APIs: . 101
8.5 Trivial functions: . 102
8.6 Concurrent & Iterative Servers 103
8.7 I/O multiplexing . 103

8.7.1 The select() System call 103
8.7.2 Examples for select() 104

8.8 Daemons in Linux operating system and writing a daemon: . . 105
8.9 The Internet superserver xinetd: 105

8.9.1 The /etc/services . 106
8.9.2 The /etc/xinetd.conf 106

8.10 List of Assignments . 107

9 Process Management 111
9.1 Scheduling Introduction . 111
9.2 Basic Types of Schedulers . 111
9.3 Process Execution Cycle . 112
9.4 When Schedular is called . 113
9.5 Scheduling Types . 114
9.6 Scheduling Algos . 115

9.6.1 Co-operative versus Preemptive 115
9.6.2 Draw-backs of co-operative scheduling 115
9.6.3 First Come First Serve 116
9.6.4 Round Robin Time Sliced 117

Emertxe Information Technologies Pvt Ltd. Copyright 2018

viii Emertxe Information Technologies Pvt Ltd

9.6.5 Round Robin Priority Based 117
9.6.6 Pre-emption . 118
9.6.7 Priority Based Non-Preemptive 118
9.6.8 Priority Based Preemptive 118

9.7 Advanced Scheduling . 119
9.7.1 Rate Monotonic Scheduling 119
9.7.2 Earliest Deadline First Scheduling 119

9.8 Linux Scheduling Algo . 120

10 Memory Management 121
10.1 Introduction . 121
10.2 Memory Management Requirements 122
10.3 Memory Management Techniques 123

10.3.1 Fixed Partioning . 123
10.3.2 Dynamic Partioning 124

10.4 Virtual Addressing . 124
10.4.1 Virtual Vs Physical Addressing 125
10.4.2 Paging . 126
10.4.3 Address Translation Architecture 127
10.4.4 Free Frames . 128
10.4.5 Implementation of Page Table 129
10.4.6 Paging Hardware with Page TLB 129
10.4.7 Memory Protection Scheme 130

10.5 Swapping . 131

A Assignment Guidelines 133
A.1 Quality of the Source Code . 133

A.1.1 Variable Names . 133
A.1.2 Indentation and Format 133
A.1.3 Internal Comments . 133
A.1.4 Modularity in Design 134

A.2 Program Performance . 134
A.2.1 Correctness of Output 134
A.2.2 Ease of Use . 134

B Grading of Programming Assignments 135

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 1

OS & LINUX Basics

1.1 Expectations out of this module

Notes:

1

Emertxe Information Technologies Pvt Ltd. Copyright 2018

2 Emertxe Information Technologies Pvt Ltd

1.2 OS Basics

An operating system, or OS, is a software program that enables the computer
hardware to communicate and operate with the computer software. OS are
found on almost any device that contains a computer with multiple programs
from cell phones and video game consoles to super computer and web servers.

It makes sure that different programs and users running at the same time
do not interfere with each other. The operating system is also responsible
for security, ensuring that unauthorized users do not access the system.

Operating systems can be classified as follows:
multi user
multi user : Allows two or more users to run programs at the same time
multiprocessing
Supports running a program on more than one CPU
multitasking
Allows more than one program to run concurrently
multithreading
Allows different parts of a single program to run concurrently
real time
Responds to input instantly
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 3

1.3 Linux Basics

Linux is inspired by the Unix operating system which first appeared in 1969,
and has been in continous use and development ever since. Many of the
design conventions behind Unix also exist in Linux and are central to under-
standing the basics of the system.

Unix was primarily oriented towards the command line interface, and
that legacy is carried on in Linux. Thus, the graphical user interface with its
windows, icons and menus are built on top of a basic command line interface.
Furthermore, this means that the Linux file system is structured to be easily
manageable and accessible from the command line.
Notes:

1.3.1 Linux Properties

• Linux is free

• Linux is portable to any hardware platform

• Linux was made to keep on running

• Linux is secure and versatile

• Linux is scalable

• The Linux OS and most Linux applications have very short debug-times

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

4 Emertxe Information Technologies Pvt Ltd

1.4 Components of LINUX

Linux System into the Major Subsystem.

Notes:

1.4.1 User Application

They are the set of applications in use on a particular Linux system. Exam-
ples include a word-processing application and a web-browser.
Notes:

1.4.2 OS Services

These are services that are typically considered part of the operating system
(e.g. windowing system, command shell)
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 5

1.4.3 Linux Kernel

Notes:

1.4.4 Hardware

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

6 Emertxe Information Technologies Pvt Ltd

1.5 Overview of the Kernel Sturcture

Notes:

1.5.1 Process Scheduler(SCHED)

Process scheduling is the heart of the Linux operating system. The process
scheduler has the following responsibilities:

• allow processes to create new copies of themselves

• determine which process will have access to the CPU and effect the
transfer between running processes

• receive interrupts and route them to the appropriate kernel subsystem

• send signals to user processes

• manage the timer hardware

• clean up process resources when a processes finishes executing

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 7

1.5.2 Memory Manager (MM)

Another important resource that’s managed by the kernel is memory. For
efficiency, given the way that the hardware manages virtual memory, mem-
ory is managed in what are called pages (4KB in size for most architectures).
Linux includes the means to manage the available memory, as well as the
hardware mechanisms for physical and virtual mappings.

Supporting multiple users of memory, there are times when the available
memory can be exhausted. For this reason, pages can be moved out of
memory and onto the disk. This process is called swapping because the
pages are swapped from memory onto the hard disk.
Notes:

1.5.3 Virtual File System (VFS)

The virtual file system (VFS) is an interesting aspect of the Linux kernel
because it provides a common interface abstraction for file systems. The VFS
provides a switching layer between the SCI and the file systems supported
by the kernel.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

8 Emertxe Information Technologies Pvt Ltd

1.5.4 Network Interface (NET)

The Linux network system provides network connectivity between machines,
and a socket communication model.
The Linux network system provides two transport protocols with differ-
ing communication models and quality of service. These are the unreli-
able, message-based UDP protocol and the reliable, streamed TCP protocol.
These are implemented on top of the IP networking protocol.
Notes:

1.5.5 Inter-Process Communication (IPC)

The Linux IPC mechanism is provided so that concurrently executing pro-
cesses have a means to share resources, synchronize and exchange data with
one another. Linux implements all forms of IPC between processes execut-
ing on the same system through shared resources, kernel data structures, and
wait queues.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 9

1.6 Kernel Designs

Most older operating systems are monolithic, that is, the whole operating
system is a single a.out file that runs in ’kernel mode.’ This binary con-
tains the process management, memory management, file system and the
rest. Examples of such systems are UNIX, MS-DOS, VMS, MVS, OS/360,
MULTICS, and many more.

The alternative is a microkernel-based system, in which most of the OS
runs as separate processes, mostly outside the kernel. They communicate by
message passing. The kernel’s job is to handle the message passing, interrupt
handling, low-level process management, and possibly the I/O. Examples of
this design are the RC4000, Amoeba, Chorus, Mach, and the not-yet-released
Windows/NT.
Notes:

1.7 LINUX File System

1.7.1 Ext2 File System

The first versions of Linux were based on the Minix filesystem. As Linux
matured, the Extended Filesystem (Ext FS), The Second Extended Filesys-
tem (Ext2) was introduced in 1994.

1.7.2 FEATURES:

• Block fragmentation

• Access Control Lists (ACL)

• Logical deletion

• Journaling

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

10 Emertxe Information Technologies Pvt Ltd

1.7.3 Ext2 Disk Data Structures

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 11

1.7.4 File Types

Notes:

1.7.5 /proc File System

The /proc filesystem contains a illusionary filesystem. It does not exist on a
disk. Instead, the kernel creates it in memory. It is used to provide informa-
tion about the system (originally about processes, hence the name).

$ /proc/cpuinfo- gives CPU related information

$ /proc/version

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

12 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 2

System Calls

2.1 User and Kernel spaces

System memory is divided into two. Kernel space and User space.

Kernel Space is where Kernel executes and provide its services.User space
is memory locations where user processes (everything other than kernel) runs.

One of the job of Kernel is to manage individual user processes within
this space and to prevent them from interfering with each other.
Notes:

13

Emertxe Information Technologies Pvt Ltd. Copyright 2018

14 Emertxe Information Technologies Pvt Ltd

2.2 System Calls

Kernel space can be accessed by user process only through the use of system
calls. System calls are request by an active process for a service performed
by the Kernel, such as I/O or process creation.

I/O is any programs operation or device that transfers data to or from
a CPU and to or from a peripheral device (such as disk drives, Key Board,
mouse and printers).

System Calls can be grouped into 5 major categories:

• Process Control

• File Mangement

• Device Management

• Information Maintainance

• Communication

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 15

2.2.1 System Calls and Library functions

A library function is an ordinary function that resides in a library external
to your program.

A call to a library function is just like any other function call.The argu-
ments are placed in processor registers or onto the stack, and execution is
transferred to the start of the functions code, which typically resides in a
loaded shared library.

A system call is implemented in the Linux kernel.When a program makes
a system call, the arguments are packaged up and handed to the kernel, which
takes over execution of the program until the call completes. A system call
isnt an ordinary function call, and a special procedure is required to transfer
control to the kernel.
Notes:

2.2.2 System Calls in Detail

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

16 Emertxe Information Technologies Pvt Ltd

2.2.3 Tracing System Calls

strace:

Strace is a tracing utility that intercepts and records the system calls that
are called by a process and the signals that are recieved by a process. The
name of each system call, it’s arguments, and its return value are printed to
STD ERR or to the specified file.

Eg : strace ls
Notes:

2.3 System Call Examples

2.3.1 File Related System Call

• open

• close

• read

• write

• lseek

• fcntl

• dup

• dup2

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 17

2.3.2 Time Related System Calls

Unix time, or POSIX time, is a system for describing points in time, defined
as the number of seconds elapsed since midnight Coordinated Universal Time
(UTC) of January 1, 1970, not counting leap seconds.

• time

• gettimeofday

• localtime

• ctime

• strftime

• Date +%s – command

Notes:

2.3.3 High Precision Sleep

• sleep

• nanosleep

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

18 Emertxe Information Technologies Pvt Ltd

2.4 Practice - I

W.A.P to copy a file to another using system calls.

2.4.1 Prerequisites

1. File related system calls

2.4.2 Objective

1. Familiarising commonly used file related system calls.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 19

2.4.3 Algorithm Design

argc < 3

int fd, fd2

fd=open file1
for reading

fd2=open new
file2 for writing

If file exists

If y

read the fd
BUFF_SIZE size

If read
success

overwrite(y/n)?

If fd2 = -1

exit 1

exit 1

write the read
contents to fd2

if write
success

exit 0

exit 0

fd=-1

exit 1

exit 1

yes

no

yes

no

no

yes

yes

no

yes

no

no

no

yes

yes

Emertxe Information Technologies Pvt Ltd. Copyright 2018

20 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 21

Emertxe Information Technologies Pvt Ltd. Copyright 2018

22 Emertxe Information Technologies Pvt Ltd

2.4.4 Dry Run

2.4.5 Practical Implementation

1. File Operations.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 23

2.5 List of Assignments

(Id) / Date Assignment Topic

() Implement cp command along with -p option

() Implement wc command for files as well as stdin

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

24 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 3

Processes

3.1 Processes

3.1.1 What is a Process?

Running Instance of a Program is called a Process.

The most fundamental concept in an Operating system is the process.Linux
is a timesharing system in which processes compete for system resources.
Every process is scheduled to run for a period of time, called time slice or
quantum. Processes are rescheduled either when its time slice expires or
when it blocks for I/O.

A process competes for system resources and CPU with other processes.
Once it gains control of the CPU, it runs a program within its own address
space. The execution of a process is independent of the execution of the oth-
ers, and it cannot read or write data into the address space of other processes.

A process consists of the executing program code, a set of resources such
as open files, internal kernel data, an address space, one or more threads of
execution and a data section containing global variables.
Notes:

25

Emertxe Information Technologies Pvt Ltd. Copyright 2018

26 Emertxe Information Technologies Pvt Ltd

3.1.2 Process Versus Program

Program is an inactice, static entity consisting of a set of instructions and a
set of data.

Process is an instance of a program running in a computer. Process is a
dynamic entity scheduled and controlled by the Operating System.
Notes:

3.2 Process States

• New State: The process being created

• Running State: A process is said to be running if it has the CPU, that
is, process actually using the CPU at that particular instant

• Blocked (or waiting) State: A process is said to be blocked if it is
waiting for some event to happen such that as an I/O completion before
it can proceed. Note that a process is unable to run until some external
event happens

• Ready State: A process is said to be ready if it use a CPU if one were
available. A ready state process is runable but temporarily stopped
running to let another process run

• Terminated state: The process has finished execution

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 27

3.2.1 Process state Transitions

Notes:

3.3 Schedular

The assignment of physical processors to processes allows processors to ac-
complish work. The problem of determining when processors should be as-
signed and to which processes is called processor scheduling or CPU schedul-
ing.
When more than one process is runable, the operating system must decide
which one first. The part of the operating system concerned with this de-
cision is called the scheduler, and algorithm it uses is called the scheduling
algorithm. All the scheduling algorithms are discussed in the process schedul-
ing chapter.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

28 Emertxe Information Technologies Pvt Ltd

3.3.1 Operations

• create a process, adding it to the set of ready processes

• dispatch one of the ready processes to the processor

• if process timed out, removing it from the processor and returning it
to the set of ready processes

• if process blocked, removing it from the processor and adding it to the
set of blocked processes

• wakeup a blocked process, moving it into the set of ready processes

• destroy a process

Notes:

3.4 Process Descriptor/Structure

In the kernel, the process descriptor is a structure called task struct, which
keeps track of process attributes and information. All kernel information
regarding a process is found there.
Notes:

3.4.1 State Field

TASK RUNNING

The process is runnable; it is either currently running or on a runqueue
waiting to run . This is the only possible state for a process executing in
user-space; it can also apply to a process in kernel-space that is actively
running.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 29

TASK INTERRUPTIBLE

The process is sleeping (that is, it is blocked), waiting for some condition
to exist. When this condition exists, the kernel sets the process’s state
to TASK RUNNING. The process also awakes prematurely and becomes
runnable if it receives a signal.
Notes:

TASK UNINTERRUPTIBLE

This state is identical to TASK INTERRUPTIBLE except that it does not
wake up and become runnable if it receives a signal. This is used in situa-
tions where the process must wait without interruption or when the event
is expected to occur quite quickly. Because the task does not respond to
signals in this state, TASK UNINTERRUPTIBLE is less often used than
TASK INTERRUPTIBLE.
Notes:

TASK STOPPED

Process execution has stopped; the task is not running nor is it eligible to
run. This occurs if the task receives the SIGSTOP, SIGTSTP, SIGTTIN, or
SIGTTOU signal or if it receives any signal while it is being debugged.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

30 Emertxe Information Technologies Pvt Ltd

TASK ZOMBIE

The task has terminated, but its parent has not yet issued a wait4() system
call. The task’s process descriptor must remain in case the parent wants to
access it. If the parent calls wait4(), the process descriptor is deallocated.
Notes:

3.4.2 Process ID

Every process has a process-ID, which is a positive integer. At any instant
this is guaranteed to be unique. Every process but one has a parent. The
exception is process 0, which is created and used by the kernel itself, for
swapping.

• process-ID : Positive integer that uniquely identifies this process.

• parent-process-ID : Process-ID of this process’s parent.

• process-group-ID : Process-ID of the process-group leader. If equal to
the process-ID, this process is the group leader.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 31

3.5 Basic Process Management

3.5.1 Viewing active process (Commands)

PS command

Notes:

PS fields

• S: process status (R: runnable, S: sleeping, T: suspended, Z: zombie)

• UID: effective user ID of the process

• PID: ID of the process

• PPID: ID of the parent process

• TIME: amount of CPU time used

• CMD: command

• NI: nice value

• C: percentage of CPU time used by the process

• PRI: priority of the process

• SZ: size of the process in KB

• TTY: the controlling terminal

• WCHAN: Memory address of the event the process is waiting for

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

32 Emertxe Information Technologies Pvt Ltd

3.5.2 Getting Process ID in C-Program

• getpid()

• getppid()

Notes:

3.5.3 Foreground and background process and killing
a process

• bg : Starts a suspended process in the background

• fg : Starts a suspended process in the foreground

• jobs: Lists the jobs running

• pidof: Find the process ID of a running program

• top: Display the process that are using the most CPU

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 33

3.5.4 Context switch

A context switch occurs when the kernel transfers control of the CPU from
an executing process to another that is ready to run. The kernel first saves
the context of the process. The context is the set of CPU register values
and other data that describes the process’ state. The kernel then loads the
context of the new process which then starts to execute.Context-switch time
is overhead; the system does no useful work while switching.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

34 Emertxe Information Technologies Pvt Ltd

3.5.5 Process Scheduling Queues

• Job queue : set of all processes in the system

• Ready queue : set of all processes residing in main memory, ready and
waiting to execute

• Device queues : set of processes waiting for an I/O device

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 35

3.6 Creating a Process

3.6.1 system() Function

The system function is used to issue a command. Execution of your program
will not continue until the command has completed.

system("wc -l");

Notes:

3.6.2 fork()-Creating a New Process

pid t fork (void);
The fork function creates a new process.

If the operation is successful, there are then both parent and child pro-
cesses and both see fork return, but with different values: it returns a value of
0 in the child process and returns the child’s process ID in the parent process.

The specific attributes of the child process that differ from the parent
process are:

• The child process has its own unique process ID.

• The parent process ID of the child process is the process ID of its parent
process.

• The child process gets its own copies of the parent process’s open file
descriptors. However, the file position associated with each descriptor
is shared by both processes.

• The elapsed processor times for the child process are set to zero.

• The child doesn’t inherit file locks set by the parent process.

• The child doesn’t inherit alarms set by the parent process.

• The set of pending signals for the child process is cleared. (The child
process inherits its mask of blocked signals and signal actions from the
parent process).

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

36 Emertxe Information Technologies Pvt Ltd

3.6.3 vfork()

vfork() is designed to be used in the specific case where the child will exec()
another program, and the parent can block until this happens. A traditional
fork() required duplicating all the pages of the parent process in the child -
a significant overhead.

While fork makes a complete copy of the calling process’s address space
and allows both the parent and child to execute independently, vfork does
not make this copy. Instead, the child process created with vfork shares its
parent’s address space until it calls exit or one of the exec functions. In the
meantime, the parent process suspends execution.
Notes:

int main()

{

pid_t pid;

if (pid = fork())

{

---- do something ---- /* parent */

}

else

{

---- do something ---- /* child */

}

return 0;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 37

3.6.4 exec()-Replacing Process Image

Executing a new process image completely changes the contents of memory,
copying only the argument and environment strings to new locations. But
many other attributes of the process are unchanged:

• The process ID and the parent process ID.

• Session and process group membership.

• Real user ID and group ID, and supplementary group IDs.

• Pending alarms.

• Current working directory and root directory.

• File mode creation mask.

• Process signal mask.

• Pending signals.

• Elapsed processor time associated with the process.

• Signals that are set to be ignored in the existing process image are also
set to be ignored in the new process image. All other signals are set to
the default action in the new process image.

Notes:

int main()

{

printf("calling ls -l\n");

execl("/bin/ls", "ls", "-l", NULL);

printf("exec fails\n");

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

38 Emertxe Information Technologies Pvt Ltd

3.6.5 exec family

• execvp

• execlp

• execve

• execl

• execle

Notes:

3.6.6 Shortcomings of fork() and exec()

pid_t pid;

if((pid = fork()) == 0)

{

execl("/bin/tail", "tail", "messages", NULL);

}

else

{

wait(&status);

----- do some other work -----

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 39

3.6.7 Copy-On-Write (COW)

Copy on Write is an important technique in the linux kernel memory man-
agement. The basic idea is to prevent the creation of unnecessary copies of
structures when creating new processes.

Pages in the parent’s region are not copied to the child’s region until
needed. Both parent and child can read the pages without being concerned
about sharing the same page. However, as soon as either parent or child
writes to the page, a new copy is written, so that the other process retains
the original view of the page.
Notes:

3.7 Wait Family of System Calls

• wait

• waitpid

• waitid

• wait3

• wait4

pid t wait(int *status) : used to wait until any one child process termi-
nates.

wait (&status) If the exit status value of the child process is zero, then the
status value reported by waitpid or wait is also zero. You can test for other
kinds of information encoded in the returned status value using the macros
mentioned in man page of wait. These macros are defined in the header file
sys/wait.h.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

40 Emertxe Information Technologies Pvt Ltd

3.8 Special Case of Processes

3.8.1 Zombie Process

A zombie process or defunct process is a process that has completed execution
but still has an entry in the process table. This entry is still needed to
allow the process that started the (now zombie) process to read its exit
status.When a process ends, all of the memory and resources associated with
it are deallocated so they can be used by other processes. However, the
process’s entry in the process table remains. The parent can read the child’s
exit status by executing the wait system call, at which stage the zombie is
removed.After the zombie is removed, its process ID and entry in the process
table can then be reused.
Notes:

3.8.2 Orphan Process

An orphan process is a computer process whose parent process has finished
or terminated, though itself remains running.In a Unix-like operating system
any orphaned process will be immediately adopted by the special init system
process. This operation is called re-parenting and occurs automatically. Even
though technically the process has the ”init” process as its parent, it is still
called an orphan process since the process that originally created it no longer
exists.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 41

3.9 Practice - I

Write a program to show parent child relationships by using fork.

3.9.1 Prerequisites

1. Concepts of process and process creation.

2. System calls for printing ids.

3.9.2 Objective

1. Understanding the picture of process creation.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

42 Emertxe Information Technologies Pvt Ltd

3.9.3 Algorithm Design

print pid
and ppid

return 0

ret=fork()

ret>0 ret==0

print pid
and child pid

return 0

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 43

3.9.4 Dry Run

3.9.5 Practical Implementation

1. Process Creation

Emertxe Information Technologies Pvt Ltd. Copyright 2018

44 Emertxe Information Technologies Pvt Ltd

3.10 List of Assignments

(Id) / Date Assignment Topic

() Do the man on ps and observe various options available

() Draw the family tree of the Process calling three forks()

() Create a process using System() system call

() Try all the functions from exec family

() Try all the functions from wait family

() Use the nice system call and analyze the result

() Create a Scenario which will cause a init to become a parent of the
zombie process

() Try above example using waitid function

() Try to prevent the child from becoming the zombie without actually
blocking on that

() Write a program to resume the process which has been stopped

() Create a child for the command(along with the options) passed as an
argument from command line(eg:- ./a.out ls -l)

() Try to use the ptrace function in your program and use
WUNTRACE option in the process parent process wait call

() Create three child processes and wait for all to terminate and
print the status of each

() Write a C program to daemonise a process.

() WAP to demonstrate the usage of vfork()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 4

Signal

4.1 Signal

4.1.1 Signal Introduction / Concepts

Signalling is interrupt like mechanism. Its a way of sending simple messages
to a process or group of processes. Most of these messages are already defined
and can be found in <linux/signal.h>. However, signals can only be pro-
cessed when the process is in user mode. If a signal has been sent to a process
that is in kernel mode, it is dealt with immediately on returning to user mode.

There are a set of defined signals that the kernel can generate or that can
be generated by other processes in the system, provided that they have the
correct privileges. Each signal in Linux has got a name starting with ’SIG’
and a number associated with it.

For example Signal ’SIGSEGV’ has got a number 11.This is defined in
/usr/include/bits/signum.h
You can list a system’s set of signals using the kill command (kill -l).

An important characteristic of signals is that they may be sent at any time
to a process whose state is usually unpredictable.Signals sent to a process
that is not currently executing must be saved by the kernel until that process
resumes execution. When switching from Kernel Mode to User Mode, Kernel
will check whether a signal for a process arrived. This happens at almost
every timer interrupt.
Notes:

45

Emertxe Information Technologies Pvt Ltd. Copyright 2018

46 Emertxe Information Technologies Pvt Ltd

4.1.2 Where Signals Come From

The kernel sends signals to processes in response to specific conditions. For
instance, any of these Signals may be sent to a process that attempts to
perform an illegal operation :

SIGBUS (bus error),
SIGSEGV (segmentation violation).

A Process may also send a Signal to another Process.
A Process may also send a Signal to itself.
Notes:

4.2 How Programs Responds to Signals

When a Process receives a signal, it processes the signal immediately, without
finishing the current function or even the current line of code.

For all possible signals, the system defines a default disposition or action
to take when a signal occurs. There are four possible default dispositions:

• Exit: Forces the process to exit.

• Core: Forces the process to exit and create a core file.

• Stop: Stops the process.

• Ignore: Ignores the signal

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 47

4.3 Handling Signals

4.3.1 Writing Your Own Signal Handler

There are several interfaces that allow you to register your own signal handler.

signal

signal(SIGALRM, wakeup);

alarm(10);

-----doing some job -----

While 10 seconds reached and process is still alive, wakeup function will
get invoked.

sigaction

sigaction() is another system call that manipulates signal handler. It is much
more advanced comparing signal().

struct sigaction action, oldact;

action.sa_sigaction = my_handler;

if (sigaction (SIGINT, &action, &oldact) == -1)

{

perror ("sigaction fails");

return -1;

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

48 Emertxe Information Technologies Pvt Ltd

4.3.2 Signal in Signal Handler

Notes:

4.4 signal.h and Signal Related Functions

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 49

4.4.1 raise()

sends a signal to the executing process.
E.g. raise(int sig);
Notes:

4.4.2 alarm()

Schedules an alarm signal. Can cause a SIGALRM.
E.g. alarm(int sec);
Notes:

4.4.3 pause()

Function shall suspend the calling thread until delivery of a signal whose
action is either to execute a signal-catching or to terminate the process.
E.g. pause();
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

50 Emertxe Information Technologies Pvt Ltd

4.5 Signal and Interrupts

Notes:

4.6 Process Termination and Exit Codes

Notes:

4.7 Practice - 1

Write a program to produce alarm. While alarm time expires, create an
interface for reseting the alarm or for exiting from the program.

4.7.1 Prerequisite

1. signal system call concepts

2. alarm function concepts

3. time related functions concept

4.7.2 Objective

1. Implementing concepts of SIGALRM signal and time related functions.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 51

4.7.3 Algorithm Design

Read alarm
Time from user

If valid
time

register
Alarm handler

Ask user needs
New alarm or not

new alarm
needed

Read alarm
Time from user

exit

If valid
time

Prompt entered
Time is invalid

Register alarm
handler

Prompt entered
Time is invalid

yes

no

yes

yes

no

no

Alarm
expires

Do some work
Display date

and time

Emertxe Information Technologies Pvt Ltd. Copyright 2018

52 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 53

Emertxe Information Technologies Pvt Ltd. Copyright 2018

54 Emertxe Information Technologies Pvt Ltd

4.7.4 Dry Run

4.7.5 Practical Implementation

1. Scheduling task at certain intervals.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 55

Emertxe Information Technologies Pvt Ltd. Copyright 2018

56 Emertxe Information Technologies Pvt Ltd

4.8 List of Assignments

(Id) / Date Assignment Topic

() Modify the Template program (SIGINT) to display the PID and uid
of the process that sent a signal

() WAP a program to handle the SIGSEGV and display the address
which caused the segmentation fault

() Try to handle the SIGABRT signal and have your observations

() Kill the process by signal & try to get the signal number
programatically

() Handle the signal in process without using a sigaction function

() Write a program to wait for the signal. Execution should begin
only if signal is received

() Write a program to handle SIGINT signal only once

() Implement alarm program taking alarm time from command line

() WAP to block certain signals from being received in signal
handler

() WAP to demonstrate the usage of clone

() WAP to get the resource-usage information of the process & also
of its child

() WAP to block the parent process untill the child reaches the
certain state of execution

() WAP to find the default cancellation state of the thread

() WAP which uses pause, alarm and raise functions

() WAP to use the mapped memory

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 5

Threads

5.1 Introducation to Threads

5.1.1 What is Thread

Technically, a thread is defined as an independent stream of instructions that
can be scheduled to run as such by the operating system.

As with processes, threads appear to run concurrently.
The Linux kernel schedules them asynchronously, interrupting each thread
from time to time to give others a chance to execute.
Notes:

57

Emertxe Information Technologies Pvt Ltd. Copyright 2018

58 Emertxe Information Technologies Pvt Ltd

5.1.2 Why Threads

• Threads, like processes, are a mechanism to allow a program to do more
than one thing at a time.

• Conceptually, a thread exists within a process.

• Threads are a finer-grained unit of execution than processes.

• That thread can create additional threads; all these threads run the
same program in the same process, but each thread may be executing
a different part of the program at any given time.

This independent flow of control is accomplished because a thread maintains
its own:

• Stack pointer

• Registers

• Scheduling properties (such as policy or priority)

• Set of pending and blocked signals

• Thread specific data

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 59

5.1.3 Advantages of Threads

• When compared to the cost of creating and managing a process, a
thread can be created with much less operating system overhead. Man-
aging threads requires fewer system resources than managing processes.

• All threads within a process share the same address space. Inter-thread
communication is more efficient and in many cases, easier to use than
inter-process communication.

• Threaded applications offer potential performance gains and practical
advantages over non-threaded applications in several other ways.

• Overlapping CPU work with I/O: For example, a program may have
sections where it is performing a long I/O operation. While one thread
is waiting for an I/O system call to complete, CPU intensive work can
be performed by other threads.

• Asynchronous event handling.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

60 Emertxe Information Technologies Pvt Ltd

5.2 Multi Threaded Environment

Notes:

5.3 Process and Thread

• Less time to create a new thread than a process

• Less time to terminate a thread than a process

• Less time to switch between two threads within the same process

• Less communication overheads – communicating between the threads
of one process is simple because the threads share everything: address
space, in particular. So, data produced by one thread is immediately
available to all the other threads

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 61

5.4 What is a pthread

GNU/Linux implements the POSIX standard thread API (known as pthreads).

All thread functions and data types are declared in the header file <pthread.h>.
The pthread functions are not included in the standard C library. Instead,
they are in libpthread, so you should add -lpthread to the command line
when you link your program.
Notes:

5.5 When to Use Threading

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

62 Emertxe Information Technologies Pvt Ltd

5.6 Thread Creation

Use the function pthread create() to add a new thread of control to the cur-
rent process. It is prototyped by:

int pthread create(pthread t *tid, const pthread attr t *attr, void*(*start routine)(void
*), void *arg);

void *my_thread_func(void *arg)

{

int i = 0;

while (i++ < 10000)

{

fprintf(stderr, "c");

}

}

int main()

{

pthread_t tid;

pthread_create(&tid, NULL, my_thread_func, NULL);

while(1)

;

return 0;

}

The pthread create() function is called with attr having the necessary
state behavior. start routine is the function with which the new thread be-
gins execution. When start routine returns, the thread exits with the exit
status set to the value returned by start routine.

When pthread create is successful, the ID of the thread created is stored
in the location referred to as tid.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 63

5.7 Passing Data to Thread

Notes:

5.8 Returning Values From Threads

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

64 Emertxe Information Technologies Pvt Ltd

5.9 Types of Threads

By default, created threads are joinable. That means, we can wait for its
completion in any other thread using the function pthread join():

This function shall suspend the calling thread until the targeted thread
terminates. When value ptr is non-NULL, then value ptr shall contain the
value returned by thread.

Following are some of the attributes that are specific to each thread :

• the thread ID, thread attribute, start routine, argument and return
value

• thread scheduling policy and priority

• signal mask, alternate signal stack

• flags for cancellation, cleanup buffers

• keys for thread specific data

• errno

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 65

5.10 Thread Attributes

Thread attributes are thread characteristics that affect the behavior of the
thread.You can set the thread attributes at the time you start a thread or
change them after the thread is actively running. Some common thread
attributes and their effects are as follows:

• Priority

• Stack size

• Name

• Thread group

• Detach state

• Scheduling policy

• Inherit scheduling

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

66 Emertxe Information Technologies Pvt Ltd

5.10.1 Creating Detached Threads

Pthreads offers a mechanism to tell the system: I am starting this thread,
but I am not interested about joining it. Please perform any clean-up action
for me, once the thread has terminated. This operation is called detaching a
thread. We can detach a thread as follows:

• During thread creation using the detachstate thread attribute

• From any thread, using pthread detach()

The function pthread detach() can be called from any thread, in particular
from within the thread to detach (any thread can obtain its own thread ID
using the pthread self() API).

To create a thread in detach state, we set the detachstate thread attribute
with the function pthread attr setdetachstate() to PTHREAD CREATE DETACHED.
This is shown below:

pthread_attr_t attr;

int main()

{

pthread_t tid;

pthread_attr_init(&attr);

pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);

pthread_create(&tid, &attr, my_thread_func, NULL);

pthread_join(tid, NULL);

}

The most important rules for join/detach are:

• Dont join a thread that has been already joined

• Dont join a detached thread

• If you detach a thread, you cannot re-attach it

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 67

5.11 Self Thread ID

The function pthread self() can be called to return the ID of the calling
thread.

pthread_t tid;

tid = pthread_self();

Notes:

5.12 Thread Cancellation

A thread can terminate its execution in the following ways:

• By returning from its first (outermost) procedure, the threads start
routine; see pthread create()

• By calling pthread exit(), supplying an exit status

• By termination with POSIX cancel functions; see pthread cancel()

The void pthread exit(void *status) is used to terminate a thread in a similar
fashion the exit() for a process.

int status;

pthread_exit(&status); /* exit with status */

The pthread exit() function terminates the calling thread. All thread-
specific data bindings are released. If the calling thread is not detached,
then the thread’s ID and the exit status specified by status are retained
until the thread is waited for (blocked). Otherwise, status is ignored and the
thread’s ID can be reclaimed immediately.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

68 Emertxe Information Technologies Pvt Ltd

5.12.1 How to Cancel

int pthread cancel(pthread t thread);

pthread_t thread;

int ret;

ret = pthread_cancel(thread);

How the cancellation request is treated depends on the state of the target
thread. Two functions,
pthread setcancelstate() and pthread setcanceltype() determine that state.
Notes:

5.12.2 Consequence of Thread Cancellation

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 69

5.12.3 Controlling Cancellation

Notes:

5.12.4 Implementing Critical Section

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

70 Emertxe Information Technologies Pvt Ltd

5.13 Cleanup Handlers

Cleanup handlers are functions that get called when a thread terminates, ei-
ther by calling pthread exit or because of cancellation.The purpose of cleanup
handlers is to free the resources that a thread may hold at the time it termi-
nates.

void *my_thread_func(void *arg)

{

pthread_cleanup_push(my_cleanup, NULL);

-----do some work ---

pthread_cleanup_pop(0);

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 71

5.14 List of Assignments

(Id) / Date Assignment Topic

() Write a code to pass a number to a thread, computer the fact-
orial of the number and return the result to the main thread

() Create a detached thread and pthread join on that and observe
the effect

() Write a program to prevent the critical section from being ca-
nceled

() Show through a code the importance of cleanup handlers

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

72 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 6

Synchronization

6.1 What is Synchronization

Programming with threads is very tricky because most threaded programs
are concurrent programs. In particular, there is no way to know when the
system will schedule one thread to run and when it will run another.

One thread might run for a very long time, or the system might switch
among threads very quickly.

Debugging a threaded program is difficult because you cannot always
easily reproduce the behavior that caused the problem. You might run the
program once and have everything work fine; the next time you run it, it
might crash.

There is no way to make the system schedule the threads exactly the
same way it did before.
Notes:

73

Emertxe Information Technologies Pvt Ltd. Copyright 2018

74 Emertxe Information Technologies Pvt Ltd

6.2 Why Synchronization

6.2.1 Race Condition

The ultimate cause of most bugs involving threads is that the threads are
accessing the same data. So the powerful aspects of threads can become a
danger.

If one thread is only partway through updating a data structure when
another thread accesses the same data structure, its a problem.

These bugs are called race conditions; the threads are racing one another
to change the same data structure.
Notes:

6.2.2 Critical Section

A critical section is a segment of code in which a thread may be updating or
reading data that other threads are dependent on, but one thread at a time.
Thus we can prevent the race condition problem.

The characteristic properties of the code that form a Critical Section are

• Codes that reference one or more variables in a read-update-write fash-
ion while any of those variables is possibly being altered by another
thread.

• Codes that alter one or more variables that are possibly being refer-
enced in read-updata-write fashion by another thread.

• Codes use a data structure while any part of it is possibly being altered
by another thread.

• Codes alter any part of a data structure while it is possibly in use by
another thread.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 75

6.3 Mutexes

6.3.1 What is Mutex

The solution to the race condition problem is to let only one thread access
the resource at a time.

GNU/Linux provides mutexes, short for MUTual EXclusion locks.

A mutex is a special lock that only one thread may lock at a time.

If a thread locks a mutex and then a second thread also tries to lock the
same mutex, the second thread is blocked, or put on hold.

Only when the first thread unlocks the mutex is the second thread un-
blockedallowed to resume execution.
Notes:

6.3.2 Creating / Destroying Mutexes

To create a mutex, create a variable of type pthread mutex t and pass a
pointer to it to pthread mutex init.

The second argument to pthread mutex init is a pointer to a mutex at-
tribute object, which specifies attributes of the mutex.

pthread_mutex_t mut;

int main()

{

pthread_mutex_init(&mut, NULL);

pthread_create(*tid, NULL, my_thread_func, NULL);

pthread_join(tid, NULL);

return 0;

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

76 Emertxe Information Technologies Pvt Ltd

6.3.3 Locking / Unlocking Mutexes

A thread may attempt to lock a mutex by calling pthread mutex lock on it.

• If the mutex was unlocked, it becomes locked and the function returns
immediately.

• If the mutex was locked by another thread, pthread mutex lock blocks
execution and returns only eventually when the mutex is unlocked by
the other thread.

• More than one thread may be blocked on a locked mutex at one time.

• When the mutex is unlocked, only one of the blocked threads is un-
blocked and allowed to lock the mutex; the other threads stay blocked.

A call to pthread mutex unlock unlocks a mutex.

This function should always be called from the same thread that locked
the mutex.

void *my_thread_func(void *arg)

{

pthread_mutex_lock(&mut);

-----do some work ---

pthread_mutex_unlock(&mut);

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 77

6.3.4 Deadlocks and Starvation

Mutexes provide a mechanism for allowing one thread to block the execu-
tion of another.This opens up the possibility of a new class of bugs, called
deadlocks. A deadlock occurs when one or more threads are stuck waiting
for something that never will occur.

Starvation occurs when a scheduler process (i.e. the operating system)
refuses to give a particular thread any quantity of a particular resource (gen-
erally CPU). If there are too many high-priority threads, a lower priority
thread may be starved. This can have negative impacts, though, particu-
larly when the lower-priority thread has a lock on some resource.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

78 Emertxe Information Technologies Pvt Ltd

6.3.5 Priority Inversion

Priority inversion is a problematic scenario in scheduling when a high priority
task is indirectly preempted by a medium priority task effectively ”inverting”
the relative priorities of the two tasks.

Consider there is a task L, with low priority. This task requires resource
R. Consider that L is running and it acquires resource R. Now, there is an-
other task H, with high priority. This task also requires resource R. Consider
H starts after L has acquired resource R. Now H has to wait until L re-
linquishes resource R. Everything works as expected up to this point, but
problems arise when a new task M starts with medium priority during this
time.

At this stage, H is blocked on R, M is ready to run, L has acquired R.
Since M is highest priority unblocked task currently, it will be scheduled first
and it will eat up all the processing power until it finishes, not allowing any
other task to run. This would block L from running. Since L cannot run, L
cannot relinquish R. Since R is still in use (by L), H cannot run. So as you
see above, M will run till it is finished, then L will run - at least up to a point
where it can relinquish R - and then H will run. Thus, in above scenario,
tasks with lower priority run before task with high priority, effectively giving
us a priority inversion.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 79

6.3.6 Types of Mutexes and Mutex Attributes

Fast mutex (the default kind) will cause a deadlock to occur.

Recursive mutex - safely be locked many times by the same thread. The
mutex remembers how many times pthread mutex lock was called on it by
the thread that holds the lock; that thread must make the same number
of calls to pthread mutex unlock before the mutex is actually unlocked and
another thread is allowed to lock it.

Error-checking mutex - The second consecutive call to pthread mutex lock
returns the failure code EDEADLK.
Notes:

6.3.7 Non-Blocking Mutex Tests

GNU/Linux provides pthread mutex trylock for this purpose. If you call
pthread mutex trylock on an unlocked mutex, you will lock the mutex as if
you had called pthread mutex lock, and pthread mutex trylock will return
zero.

If the mutex is already locked by another thread, pthread mutex trylock
will not block. Instead, it will return immediately with the error code
EBUSY. The mutex lock held by the other thread is not affected. You may
try again later to lock the mutex.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

80 Emertxe Information Technologies Pvt Ltd

6.4 Semaphores for Threads

A semaphore is a counter that can be used to synchronize multiple threads.
As with a mutex, GNU/Linux guarantees that checking or modifying the
value of a semaphore can be done safely, without creating a race condition.

Each semaphore has a counter value, which is a non-negative integer given
at initialising.

sem init(sem t *sem, int pshared, unsigned int value);

A wait operation decrements the value of the semaphore by 1. If the value
is already zero, the operation blocks until the value of the semaphore becomes
positive (due to the action of some other thread). When the semaphores value
becomes positive, it is decremented by 1 and the wait operation returns.

sem wait(sem t *sem);

A post operation increments the value of the semaphore by 1. If the
semaphore was previously zero and other threads are blocked in a wait op-
eration on that semaphore, one of those threads is unblocked and its wait
operation completes (which brings the semaphores value back to zero).

sem post(sem t *sem);
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 81

6.5 Practice - 1

Write a multi threaded program to calculate the average of numbers in an
array.

6.5.1 Prerequisites

1. Thread creation concepts.

2. Thread synchronization methods.

6.5.2 Objective

1. Implementing synchronization between threads.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

82 Emertxe Information Technologies Pvt Ltd

6.5.3 Algorithm Design

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 83

read count number
of int from user

wait for all
n threads to join

create n number
of threads

sum=sum+
arr[i]

i<limiti<limit i<limit

sem
available

sem
available

sem
available

sum=sum+
arr[i]

sum=sum+
arr[i]

i=0,limit=
MAX_COUNT

i=0,limit=
MAX_COUNT

i=0,limit=
MAX_COUNT

compute the avg

take sem

give sem

take semtake sem

give semgive sem

MAX_COUNT=5

Emertxe Information Technologies Pvt Ltd. Copyright 2018

84 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 85

6.5.4 Dry Run

6.5.5 Practical Implementation

1. Multi threaded programming.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

86 Emertxe Information Technologies Pvt Ltd

6.6 List of Assignments

(Id) / Date Assignment Topic

() Create a deadlock with two threads and two mutex

() Use semaphore to synchronize the critical section access between
two threads

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 7

LINUX IPC

7.1 Introduction

Interprocess communication (IPC) is the transfer of data among processes.
The types of inter process communication are:

• Signals - Sent by other processes or the kernel to a specific process to
indicate various conditions.

• Pipes - Unnamed pipes set up by the shell normally with the ”|” char-
acter to route output from one program to the input of another.

• FIFOS - Named pipes operating on the basis of first data in, first data
out.

• Message queues - Message queues are a mechanism set up to allow one
or more processes to write messages that can be read by one or more
other processes.

• Semaphores - Counters that are used to control access to shared re-
sources. These counters are used as a locking mechanism to prevent
more than one process from using the resource at a time.

• Shared memory - The mapping of a memory area to be shared by
multiple processes.

Notes:

87

Emertxe Information Technologies Pvt Ltd. Copyright 2018

88 Emertxe Information Technologies Pvt Ltd

7.2 Pipe

Pipe is used for one-way communication of a stream of bytes.

7.2.1 Creating Pipes

To create a simple pipe with C, we make use of the pipe() system call. It
takes a single argument, which is an array of two integers, and if successful,
the array will contain two new file descriptors to be used for the pipeline.

int pipe(int fd[2]);
The first integer in the array (element 0) is set up and opened for reading,

while the second integer (element 1) is set up and opened for writing.

To send data to the pipe, we use the write() system call, and to retrieve
data from the pipe, we use the read() system call. Remember, low-level file
I/O system calls work with file descriptors! However, keep in mind that cer-
tain system calls, such as lseek(), do not work with descriptors to pipes.

int pfd[2];

pipe(pfd);

write(pfd[1], buf, size);

read(pfd[0], buf, SIZE);

Pipe can be used to connect the standard output of one process to the
standard input of another.They provide a method of one-way communica-
tions (hence the term half-duplex) between processes.

ls | sort | lp
The above sets up a pipeline, taking the output of ls as the input of sort,

and the output of sort as the input of lp.
Notes:

7.2.2 Properties

Pipe does a destructive read, which means that the data once read from the
pipe cannot be retrieved. A pipe has a finite size, always atleast 4K.
Notes:

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 89

7.2.3 Process Communication Using Pipes

A single process would not use a pipe. They are used when two processes wish
to communicate in a one-way fashion. A process splits in two using fork().
A pipe opened before the fork becomes shared between the two processes.

Before fork

After fork

This gives two read ends and two write ends. The read end of the pipe will
not be closed until both of the read ends are closed, and the write end will
not be closed until both the write ends are closed.

Either process can write into the pipe, and either can read from it. Which
process will get what is not known.

For predictable behaviour, one of the processes must close its read end,
and the other must close its write end. After fork

Emertxe Information Technologies Pvt Ltd. Copyright 2018

90 Emertxe Information Technologies Pvt Ltd

Suppose the parent wants to write down a pipeline to a child. The parent
closes its read end, and writes into the other end. The child closes its write
end and reads from the other end.

When the processes have ceased communication, the parent closes its
write end. This means that the child gets eof on its next read, and it can
close its read end.

#include <stdio.h>

#define SIZE 1024

int main(int argc, char **argv)

{

int pfd[2];

int nread;

int pid;

char buf[SIZE];

if (pipe(pfd) == -1)

{

perror("pipe failed");

exit(1);

}

if ((pid = fork()) < 0)

{

perror("fork failed");

exit(2);

}

if (pid == 0)

{

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 91

/* child */

close(pfd[1]);

while ((nread = read(pfd[0], buf, SIZE)) != 0)

printf("child read %s\n", buf);

close(pfd[0]);

}

else

{

/* parent */

close(pfd[0]);

strcpy(buf, "hello...");

/* include null terminator in write */

write(pfd[1], buf,

strlen(buf)+1);

close(pfd[1]);

}

exit(0);

}

Notes:

7.2.4 Limitations of Pipes

Pipes can be used only between the inter-related processes, like parent and
child.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

92 Emertxe Information Technologies Pvt Ltd

7.3 FIFOs

Fifos are named pipes.
Notes:

7.3.1 Properties

• Named pipes exist as a device special file in the file system.

• Processes of different ancestry can share data through a named pipe.

• When all I/O is done by sharing processes, the named pipe remains in
the file system for later use.

Notes:

7.3.2 Creating a FIFO

There are several ways of creating a named pipe. The first two can be done
directly from the shell.

mknod MYFIFO p

mkfifo a=rw MYFIFO

To create a FIFO in C, we can make use of the mknod() system call.

mknod("/tmp/MYFIFO", S_IFIFO|0666, 0);

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 93

7.4 Shared Memory

Shared Memory is an efficeint means of passing data between programs. One
program will create a memory portion which other processes (if permitted)
can access.
Notes:

7.4.1 Allocation

shmget() is used to obtain access to a shared memory segment. It is proto-
typed by:

int shmget(key t key, size t size, int shmflg);

The key argument is a access value associated with the semaphore ID.
The size argument is the size in bytes of the requested shared memory. The
shmflg argument specifies the initial access permissions and creation control
flags.

When the call succeeds, it returns the shared memory segment ID. This
call is also used to get the ID of an existing shared segment (from a process
requesting sharing of some existing memory portion).

int shm_id;

shm_id = shmget(key, 1024, IPC_CREAT);

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

94 Emertxe Information Technologies Pvt Ltd

7.4.2 Attachment and Detachment

shmat() and shmdt() are used to attach and detach shared memory segments.

Their prototypes are as follows:
void *shmat(int shmid, const void *shmaddr, int shmflg);
int shmdt(const void *shmaddr);

shmat() returns a pointer, shmaddr, to the head of the shared segment
associated with a valid shmid. shmdt() detaches the shared memory segment
located at the address indicated by shmaddr.

void *ptr;

ptr = shmat(shm_id, 0, 0);

---do some work ---

shmdt(ptr);

Notes:

7.4.3 Controlling and Deallocating Shared Memory

shmctl() is used to alter the permissions and other characteristics of a shared
memory segment. It is prototyped as follows:

int shmctl(int shmid, int cmd, struct shmid ds *buf);

struct shmid_ds shm;

shmctl(shm_id, IPC_STAT, &shm);

--- do some work ----

shmdt(ptr);

shmctl(shm_id, IPC_RMID, &shm);

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 95

7.5 Semaphores

Semaphores can best be described as counters used to control access to shared
resources by multiple processes. They are most often used as a locking mech-
anism to prevent processes from accessing a particular resource while another
process is performing operations on it.
Notes:

7.5.1 Allocation

• The calls semget and semctl allocate and deallocate semaphores

• Invoke semget with a key specifying a semaphore set, the number of
semaphores in the set, and permission flags as for shmget

• The return value is a semaphore set identifier.

• You can obtain the identifier of an existing semaphore set by specifying
the right key value; in this case, the number of semaphores can be zero.

int main()

{

int semid;

semid = semget(key, 2, IPC_CREAT|0600);

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

96 Emertxe Information Technologies Pvt Ltd

7.5.2 Deallocation

• Semaphores continue to exist even after all processes using them have
terminated.

• Invoke semctl with the semaphore identifier, the number of semaphores
in the set, IPC RMID as the third argument, and any union semun
value as the fourth argument (which is ignored).

int main()

{

/* Allocate and get semid */

semctl(semid, 0, IPC_RMID);

}

Notes:

7.5.3 Initialization

• To initialize a semaphore, use semctl with zero as the second argument
and SETALL as the third argument.

• For the fourth argument, you must create a union semun object and
point its array field at an array of unsigned short values.

• Each value is used to initialize one semaphore in the set.

int main()

{

/* Allocate */

unsigned short int arr[2];

union semun sem;

arr[0] = 1;

arr[1] = 1;

sem.array = arr;

semctl (semid, 1, SETALL, sem.array);

/* Deallocate */

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 97

7.5.4 Wait and Post operations

• Each semaphore has a non-negative value and supports wait and post
operations.

• The semop system call implements both operations.

• Its first parameter specifies a semaphore set identifier.

• Its second parameter is an array of struct sembuf elements, which spec-
ify the operations you want to perform.

• The third parameter is the length of this array.

• The fields of struct sembuf are listed here:

– sem num is the semaphore number in the semaphore set on which
the operation is performed.

– sem op is an integer that specifies the semaphore operation.

– If sem op is a positive number, that number is added to the
semaphore value immediately.

– If sem op is a negative number, the absolute value of that number
is subtracted from the semaphore value.

int main()

{

/* Allocate */

/* Initialise */

struct sembuf buffer[1];

buffer[0].sem_num = 0;

buffer[0].sem_op = -1;

buffer[0].sem_flg = SEM_UNDO;

semop(semid, &buffer[0], 1);

/* Deallocate */

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

98 Emertxe Information Technologies Pvt Ltd

7.6 List of Assignments

(Id) / Date Assignment Topic
() WAP to have a IPC using Message queues

() Implement ls -l | grep ”pattern” | wc -l

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 8

Unix network programming

8.1 Introduction to sockets

8.2 Client server mechanism:

99

Emertxe Information Technologies Pvt Ltd. Copyright 2018

100 Emertxe Information Technologies Pvt Ltd

8.3 Structures used in socket programming:

struct sockaddr

{

unsigned short sa_family; // address family, AF_xxx

char sa_data[14]; // 14 bytes of protocol address

};

struct sockaddr_in

{

short sin_family; // e.g. AF_INET

unsigned short sin_port; // e.g. htons(3490)

struct in_addr sin_addr; // see struct in_addr, below

char sin_zero[8]; // zero this if you want to

};

struct in_addr

{

unsigned long s_addr; // that’s a 32-bit long, or 4 bytes

};

Hands on:

1. Open sys/types.h and sys/socket.h in the Linux and read through the
definitions

2. What is the byte ordering that Linux is using? Write a C program to
find out the byte ordering of Linux

3. What is the IP address of the loopback interface ?

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 101

8.4 The socket APIs:

• int socket(int domain, int type, int protocol);

• int bind(int sockfd, struct sockaddr *my addr, int addrlen);

• int connect(int sockfd, struct sockaddr *serv addr, int addrlen);

• int listen(int sockfd, int backlog);

• int accept(int sockfd, struct sockaddr *addr, socklen t *addrlen);

• int send(int sockfd, const void *msg, int len, int flags);

• int recv(int sockfd, void *buf, int len, unsigned int flags);

• int sendto(int sockfd, const void *msg, int len, unsigned int flags, const
struct sockaddr *to, socklen t tolen);

• int recvfrom(int sockfd, void *buf, int len, unsigned int flags, struct
sockaddr *from, int *fromlen);

• close(sockfd);

Emertxe Information Technologies Pvt Ltd. Copyright 2018

102 Emertxe Information Technologies Pvt Ltd

8.5 Trivial functions:

• int gethostname(char *hostname, size t size);

• struct hostent *gethostbyname(const char *name);

• uint32 t htonl(uint32 t hostlong);

• uint16 t htons(uint16 t hostshort);

• uint32 t ntohl(uint32 t netlong);

• uint16 t ntohs(uint16 t netshort);

• int getsockopt(int s, int level, int optname, void *optval, socklen t
*optlen);

• int setsockopt(int s, int level, int optname, const void *optval, socklen t
optlen);

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 103

8.6 Concurrent & Iterative Servers

8.7 I/O multiplexing

8.7.1 The select() System call

int select(int numfds, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

struct timeval

{

int tv_sec; // seconds

int tv_usec; // microseconds

};

• FD ZERO(fd set *set) – clears a file descriptor set

• FD SET(int fd, fd set *set) – adds fd to the set

• FD CLR(int fd, fd set *set) – removes fd from the set

• FD ISSET(int fd, fd set *set) – tests to see if fd is in the set

Emertxe Information Technologies Pvt Ltd. Copyright 2018

104 Emertxe Information Technologies Pvt Ltd

8.7.2 Examples for select()

/*

** select.c -- a select() demo

*/

#include <stdio.h>

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

#define STDIN 0 // file descriptor for standard input

int main(void)

{

struct timeval tv;

fd_set readfds;

tv.tv_sec = 2;

tv.tv_usec = 500000;

FD_ZERO(&readfds);

FD_SET(STDIN, &readfds);

// don’t care about writefds and exceptfds:

select(STDIN+1, &readfds, NULL, NULL, &tv);

if (FD_ISSET(STDIN, &readfds))

printf("A key was pressed!\n");

else

printf("Timed out.\n");

return 0;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 105

8.8 Daemons in Linux operating system and

writing a daemon:

Xinetd Xinetd is a secure replacement for inetd, the Internet services dae-
mon. Xinetd provides access control for all services based on the address of
the remote host and/or on time of access and can prevent denial-of-access
attacks. Xinetd provides extensive logging, has no limit on the number of
server arguments, and lets you bind specific services to specific IP addresses
on your host machine. Each service has its own specific configuration file for
Xinetd; the files a relocated in the /etc/xinetd.d directory

8.9 The Internet superserver xinetd:

The xinetd daemon is a TCP wrapped super service which controls access to a
subset of popular network services including FTP, IMAP, and Telnet. It also
provides service-specific configuration options for access control, enhanced
logging, binding, redirection, and resource utilization control. When a client
host attempts to connect to a network service controlled by xinetd, the super
service receives the request and checks for any TCP wrappers access control
rules. If access is allowed, xinetd verifies that the connection is allowed under
its own access rules for that service and that the service is not consuming
more than its allotted amount of resources or is in breach of any defined
rules. It then starts an instance of the requested service and passes control
of the connection to it. Once the connection is established, xinetd does not
interfere further with communication between the client host and the server.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

106 Emertxe Information Technologies Pvt Ltd

8.9.1 The /etc/services

This configuration file defines the sockets and protocols used for Internet
services. Each service is listed on a single line corresponding to the form:

Syntax: ServiceName PortNumber/ProtocolName Aliases

ServiceName : Specifies an official Internet service
PortNumber : Specifies the socket port number user
ProtocolName : Specifies the transport protocol used
Aliases : Specifies a list of unofficial service names.

8.9.2 The /etc/xinetd.conf

The /etc/xinetd.conf file contains general configuration settings which effect
every service under xinetd’s control. It is read once when the xinetd service
is started, so for configuration changes to take effect, the administrator must
restart the xinetd service. Below is a sample /etc/xinetd.conf

service <service_name>

{

<attribute> <assign_op> <value> <value>

}

service SMTP

{

socket type = stream

protocol = tcp

wait = no

user = mail

server = /usr/sbin/exim

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 107

8.10 List of Assignments

(Id) / Date Assignment Topic
() Simple client-server using TCP

() Simple client-server using UDP

() Concurrent TCP server using fork()

() Terminal protocol using sockets

() Remote command execution using UDP sockets

() Simple program using select()

() Concurrent TCP server using select()

() UDP echo client using select()

() Implementation of a daemon using ’xinetd’

4. Terminal protocol using sockets
Assignment description: The idea of terminal protocol is to implement a
protocol using sockets. In order to implement following three defnitions are
made:
Servers:

These are the server entities who are running a particular service in a prede-
fined port. The service could be anything and the student need to decide it.
Say for example it can provide quote of the day, time of the day or simple
database query. While implementing the service usage of data structures
library needs to be made. No array based or any static storage is allowed in
servers. All servers are designed as concurrent servers.
Clients:

The clients are the ones who need any of the services provided by the server.
But unlike the normal client-server case, these clients don’t know the port
number and the IP address of the server. They only know the intermediate
’relay-agent’ (which is again a typical socket server program) running on a
pre-defned port. The clients would send a ’relay request’ packet to the relay
agent along with the service name and number. These service name and
number definitions are user defined. On getting the ’relay reply’ packet, the

Emertxe Information Technologies Pvt Ltd. Copyright 2018

108 Emertxe Information Technologies Pvt Ltd

client should parse it and find out the port number and IP address of the
server. Depending on the service it requires it sends the appropriate ’server
request’ packets and get the ’server reply’ packets back.
Relay-agent: The relay agents act in between the clients and servers. They

have a database of server information and would provide to the clients, when
clients send a ’relay request’ packet. The relay agent would search through
its database for the required service and send back the response in the ’relay
reply’ packet. The database is again a dynamically created and data struc-
tures library must be used for the same.

Implementation details:

1. There should be a client program (client.c), relay program (relay.c) and
server programs (server1.c, server2.c etc..) as a part of the deliverables.

2. The implementation should use TCP sockets in all communications.

3. There should be relay request, relay reply, service request(s) and service
reply(s) packets should be defined.

4. Under no circumstances any static storage should be used.

5. Assume the connectivity is robust and no need to handle the error
cases.

Remote command execution using UDP sockets
Assignment description:

In the network diagnostics kind of applications, monitoring remote devices
and getting by executing certain commands play a very important role. For

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 109

example, sitting in India the administrator may want to monitor the enter-
prise server that is kept in Russia. The adminis- trator would send the remote
command and the external entity would reply back with the output of the
command. This assignment is to implement the remote command execution
using Linux environment.

The UDP client would send any standard Linux shell command (say ’ls’)

using the ’command request’ packet along with the number of times the com-
mand needs to be executed. At the server side the server would parse the
command the execute it the number of times specified. Apart from ex- ecut-
ing it, the server would capture the output in a file. This file would be then
read by the server and the output would be sent back to the client in terms
of 64 bytes of ’data’ packets along with the packet number. If the data size
is less then 64 bytes it needs to be specified by the server. As this connection
is unreliable UDP connection the client should acknowledge back with and
ACK packet along with the packet number. The server would send the next
packet only after receiving the successful ACK for the previous packet.
Implementation details:

1. Separate command request, data and ACK packets needs to be defined.

2. Output of each command should be written in a Separate file both in
the client side and server side.

3. Use C file operations

8.UDP echo client using ’select’
Assignment description: Construct a UDP echo client that takes as ar

guments a server name or IP address and a port number.Your client will use
select() to determine if data is ready to be read from the keyboard.Any line
typed on the keyboard should be sent to the server (using sendto() API).
Any datagrams received from the server (recvfrom()) should be printed (dis
played). Maximum message/buffer length is 1024 bytes. For example:

$echo client 192.168.32.10 1000

message to the server

>

>

> message from the server

Emertxe Information Technologies Pvt Ltd. Copyright 2018

110 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 9

Process Management

9.1 Scheduling Introduction

Schedular is the component of an Operating System that determines which
process should be run, and when. It is a mechanism used to achieve the
desired objective of multitasking. So schedular is termed as the heart and
soul of the Operating System.
Notes:

9.2 Basic Types of Schedulers

• Long-term scheduler (or job scheduler) selects which processes should
be brought into the ready queue.

• Short-term scheduler (or CPU scheduler) selects which process should
be executed next and allocates CPU.

Notes:

111

Emertxe Information Technologies Pvt Ltd. Copyright 2018

112 Emertxe Information Technologies Pvt Ltd

9.3 Process Execution Cycle

Maximum CPU utilization obtained with multiprogramming.

CPU & I/O Burst Cycle Process execution consists of a cycle of CPU
execution and I/O wait.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 113

9.4 When Schedular is called

Selects from among the processes in memory that are ready to execute, and
allocates the CPU to one of them. CPU scheduling decisions may take place
when a process:

• 1.Switches from running to waiting state.

• 2.Switches from running to ready state.

• 3.Switches from waiting to ready.

• 4.Terminates.

Scheduling under 1 and 4 is nonpreemptive.All other scheduling is preemp-
tive.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

114 Emertxe Information Technologies Pvt Ltd

9.5 Scheduling Types

• Co-Operative

• Pre-Emptive

• First Come First Serve

• Priority based

• RR-Time slice

• RR-Priority based

• Pre-emptive

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 115

9.6 Scheduling Algos

9.6.1 Co-operative versus Preemptive

In Co-operative scheduling, Process co-operate in terms of sharing processor
timing. The process voluntarily gives the kernel a chance to perform a pro-
cess switch.

In Preemptive Multiprocessing, process are preempted by a portion of
the OS called the scheduler.
Notes:

9.6.2 Draw-backs of co-operative scheduling

• Failure to make switch call affects all other tasks in the system.

• More importantly, if a task fails (crashes), the call to the scheduler is
never made and the system locks up.

• The only advantage of co-operative scheduling is fewer reentrance prob-
lems are encountered.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

116 Emertxe Information Technologies Pvt Ltd

9.6.3 First Come First Serve

FCFS is also known as FIFO.In FCFS, all the process have equal priorities
and they share the processor co-operatively.The process are scheduled for
execution in the order which they enter the ready queue.
E.g : If the process enter the ready queue in the order P1, P2 & P3 then the
order of execution would be P1, P2 and P3.

• The average waiting time under the FCFS policy is often quite long.

• FCFS is non-preemptive.

example :

Consider the following set of processes that arrive at time 0, with the length
of the CPU burst given in milliseconds:

Process Burst time

P1 20

P1 5

P2 3

Notes:

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 117

9.6.4 Round Robin Time Sliced

This time slicing is similar to FCFS except that the scheduler forces process to
give up the processor based on the timer interrupt. It does so by preempting
the current process (i.e. the process actually running) at the end of each
time slice.The process is moved to the end of the priority level.
Notes:

9.6.5 Round Robin Priority Based

Process t1, t2, & t3 having same priorities. Round-robin scheduling. Process
t4 has higher priority. So it preempts t2.

example :

Consider the following set of processes that arrive at time 0, with the length
of the CPU burst given in milliseconds:
Process Burst time

P1 24

P2 3

P3 3

Notes:

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

118 Emertxe Information Technologies Pvt Ltd

9.6.6 Pre-emption

Pre-emption means while a lower priority process is executing on the proces-
sor another process higher in priority than comes up in the ready queue, it
preempts the lower priority process.
Notes:

9.6.7 Priority Based Non-Preemptive

In Priority based non-preemptive scheduling, while a lower priority process
is executing even if a higher priority process comes up in the ready queue
it wont preempt the current process but will give control to it either if it
finishes its job or has to wait for some I/O.

If there are five process in a systems with increasing order of priority as
t1,t2,t3,t4 and t5 where t5 is the highest priority.At one point of time t3 is
executing and the t2 & t1 are in the ready queue where as t4 and t5 are in
the delayed state. As the delay for t5 is over it comes in to the ready queue
but does not acquire the processor from t3 until t3 finishes or goes into I/O
wait/delayed state.
Notes:

9.6.8 Priority Based Preemptive

In case priority based preemptive algorithm if a higher priority process be-
comes ready while a lower priority process is executing it immediately pre-
empts the lower priority process from the processor. It is widely used method
for embedded systems s/w.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 119

9.7 Advanced Scheduling

9.7.1 Rate Monotonic Scheduling

The highest Priority is assigned to the Task with the Shortest Period. All
Tasks in the task set are periodic.The relative deadline of the task is equal
to the period of the Task. Smaller the period, higher the priority i.e Priority
is inversely proportional to the period.
Notes:

9.7.2 Earliest Deadline First Scheduling

This kind of scheduler tries to give execution time to the task that is most
quickly approaching its deadline. This is typically done by the scheduler
changing priorities of tasks on-the-fly as they approach their individual dead-
lines.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

120 Emertxe Information Technologies Pvt Ltd

9.8 Linux Scheduling Algo

Works by dividing the CPU time into epochs. In a single epoch, every process
has a specified time quantum whose duration is computed when the epoch
begins. Different processes have different time quantum durations.

The time quantum value is the maximum CPU time portion assigned to
the process in that epoch.When a process has exhausted its time quantum,
it is preempted and replaced by another runnable process.If it suspends itself
to wait for I/O, it preserves some of its time quantum and can be selected
again during the same epoch.

The epoch ends when all runnable processes have exhausted their quanta;Then
the scheduler algorithm recomputes the time-quantum durations of all pro-
cesses and a new epoch begins.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 10

Memory Management

10.1 Introduction

The memory management subsystem is one of the most important parts of
the operating system. Since the early days of computing, there has been a
need for more memory than exists physically in a system. Strategies have
been developed to overcome this limitation and the most successful of these
is virtual memory. Virtual memory makes the system appear to have more
memory than it actually has by sharing it between competing processes as
they need it.
Notes:

121

Emertxe Information Technologies Pvt Ltd. Copyright 2018

122 Emertxe Information Technologies Pvt Ltd

10.2 Memory Management Requirements

• Relocation

– Programmer does not know where the program will be placed in
memory when it is executed

– Before the program is loaded, address references are usually rela-
tive addresses to the entry point of the program, which is 0. These
are called logical addresses, which make up a logical address space.

– Memory references must be translated in the code to actual phys-
ical memory addresses, which make up a physical address space.

The Translation may be performed at:

– Compile Time: If it is known in advance that the program will
reside at specific location in main memory, then compiler may be
told to build the object code with absolute addresses.

– Load Time: In most cases, the compiler must generate relocat-
able code with logical addresses. The address translation may be
performed at the load time.

– Execution Time: The process may be swapped out to allow other
processes to be loaded.

• Protection

– Processes should not be able to reference memory locations in
another process without permission

– Impossible to check absolute addresses in programs since the pro-
gram could be relocated

– Must be checked during execution

• Sharing

– Allow several processes to access the same portion of memory.

– For example, when using shared memory IPC, we need two pro-
cesses to share the same memory segment

• Logical Organization(Memory with attributes)

– Program is divided into modules, each having a different attribute.

– For example, in Linux, Code Segment has a Read-only attribute.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 123

• Physical Organization(Overlaying & Reusing)

– Processes in the user space will be leaving & getting in.

– Each process needs the memory to execute. So, the memory needs
to be partitioned between processes.

Notes:

10.3 Memory Management Techniques

10.3.1 Fixed Partioning

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

124 Emertxe Information Technologies Pvt Ltd

10.3.2 Dynamic Partioning

Notes:

10.4 Virtual Addressing

As the processor executes a program it reads an instruction from memory
and decodes it. In decoding the instruction it may need to fetch or store the
contents of a location in memory. The processor then executes the instruc-
tion and moves onto the next instruction in the program. In this way the
processor is always accessing memory either to fetch instructions or to fetch
and store data.

In a virtual memory system all of these addresses are virtual addresses
and not physical addresses. These virtual addresses are converted into phys-
ical addresses by the processor based on information held in a set of tables
maintained by the operating system.

To make this translation easier, virtual and physical memory are divided
into handy sized chunks called pages.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 125

10.4.1 Virtual Vs Physical Addressing

Physical addresses refer to hardware addresses of physical memory.
Virtual addresses refer to the virtual store viewed by the process.

• virtual addresses might be the same as physical addresses

• might be dierent, in which case virtual addresses must be mapped into
physical

• addresses. Mapping is done by Memory Management Unit (MMU).

• virtual space is limited by size of virtual addresses (not physical ad-
dresses)

• virtual space and physical memory space are independent

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

126 Emertxe Information Technologies Pvt Ltd

10.4.2 Paging

Paging is the most common memory management technique:

• virtual space of process divided into fixed-size pages

• virtual address composed of page number and page oset

• physical memory divided into fixed-size frames

• page in virtual space ts into frame in physical memory

• Mapping of VA to PA is done with a page table. Each process has an
associated page table.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 127

10.4.3 Address Translation Architecture

Start execution, causing address translation to be used.

• extract page number from virtual address (show page”|”oset). If we
assume 1K page then 1024 bytes then oset is 10 bits.

• if page number is greater than number of pages, generate an illegal
page trap

• access appropriate page table entry

• if page is not in memory, trap missing page

• if access violation, trap protection violation (segmentation violation in
Unix)

• finally, return physical address (frame number * page size + page offset)

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

128 Emertxe Information Technologies Pvt Ltd

10.4.4 Free Frames

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 129

10.4.5 Implementation of Page Table

Page table is kept in main memory. Page-table base register (PTBR) points
to the page table. Notes:

10.4.6 Paging Hardware with Page TLB

To speed translations, hardware maintains a cache called the translation
lookaside buer(TLB). Part of the MMU. Thus, virtual memory accesses:

• check TLB for desired mapping; if present, we are done

• if not present in TLB, consult mapping tables in (slower) memory

• place virtual/physical address pair in cache

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

130 Emertxe Information Technologies Pvt Ltd

10.4.7 Memory Protection Scheme

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 131

10.5 Swapping

If a process needs to bring a virtual page into physical memory and there are
no free physical pages available, the operating system must make room for
this page by discarding another page from physical memory.

The operating system must preserve the contents of that page, if the page
is modified, so that it can be accessed at a later time. This type of page is
known as a dirty page and when it is removed from memory it is saved in a
special sort of file called the swap file.

Linux uses a Least Recently Used (LRU) page aging technique to fairly
choose pages which might be removed from the system. This scheme involves
every page in the system having an age which changes as the page is accessed.
The more that a page is accessed, the younger it is; the less that it is accessed
the older and more stale it becomes. Old pages are good candidates for
swapping.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

132 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Appendix A

Assignment Guidelines

The following highlights common deficiencies which lead to loss of marks in
Programming assignments. Review this sheet before turningin each Assigne-
mentt to make sure that the it is complete in all respects.

A.1 Quality of the Source Code

A.1.1 Variable Names

• Use variable names with a clear meaning in the context of the program
whenever possible.

A.1.2 Indentation and Format

• Include adequate white-space in the program to improve readability.
Insert blank lines to group sections of code. Use indentation to improve
readability of control flow. Avoid confusing use of opening/closing
braces.

A.1.3 Internal Comments

• Main program comments should describe overall purpose of the pro-
gram. You should have a comment at the beginning of each source
file describing what that file contains/does. Function comments should
describe their purpose and other pertinent information, if any.

• Compound statements (control flow) should be commented. Finally,
see that commenting is not overdone and redundant.

133

Emertxe Information Technologies Pvt Ltd. Copyright 2018

134 Emertxe Information Technologies Pvt Ltd

A.1.4 Modularity in Design

• Avoid accomplishing too many tasks in one function; use a separate
module (Split your code into multiple logical functions). Also, avoid
too many lines of code in a single module; create more modules. De-
sign should facilitate individual module testing. Use automatic/local
variables instead of external variables whenever possible. Use separate
header files and implementation files for unrelated functions.

A.2 Program Performance

A.2.1 Correctness of Output

• Ensure that all outputs are correct. Incorrect outputs can lead to
substantial loss in grade

A.2.2 Ease of Use

• The program should facilitate repeated use when used interactively
and should allow easy exit. Requests for interactive input from the
user should be clear. Incorrect user inputs should be captured and
explained. Outputs should be well-formatted.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Appendix B

Grading of Programming
Assignments

• Total points per assignment = 10

• Points for timely/early submission = 1

• The source code is out of 3 points. The distribution of points is as
follows:

– (a) The existence of the code itself (1 pts)

– (b) Proper indentation of the code and comments (1 pts)

– (c) Proper naming of the functions, variables + Modularity + (1
pts)

• You get 4 points if the program does exactly what it is supposed to do.

• Two (2) points are reserved for the ease of use, the type of user interface,
the ability to handle various user input errors, or any extra features that
your program might have.

135

Emertxe Information Technologies Pvt Ltd. Copyright 2018

