
EmbEddEd

36 February 2015 | electronics For you www.eFymag.com

Selecting The Right Operating System
for Your Next Embedded Design

From robots, cars, home appliances
to calculators, thermostats, ATMs
and mobile phones, embedded

systems are everywhere. And at the heart
of almost every embedded system is its
operating system (OS), which plays a
critical role in keeping the system alive
and running. Therefore it is essential to
choose the right OS at the very beginning
of the design cycle itself. Let us explore
the important parameters that must be
considered while selecting the perfect OS
for your embedded application.

An OS can greatly affect the develop-
ment of the design. According to Andrew
Longhurst, engineering and business
development manager, Witten-
stein High Integrity Sys-
tems, by selecting an
appropriate OS, the
developer gains three
things: one, a task
based design that
enhances modular-
ity, simplifies test-
ing and encourages
code re-use; two, an
environment that makes
it easier for engineering
teams to develop together; and
three, abstraction of timing behaviour
from functional behaviour, which should
result in a smaller code size and more ef-
ficient use of available resources.

Peripheral support, memory usage and
real-time capability are key features that
govern the suitability of the OS. Longhurst
says, “Using the wrong OS, particularly
one that does not provide sufficient real-
time capability, will severely compromise
the design and viability of the final prod-
uct. The OS needs to be of high quality
and easy to use.” He adds, “It is hard
enough developing embedded projects
and you do not want to be struggling with

OS-related problems as well. The OS must
be a trusted component that the developer
can rely on, supported by in-depth training
and good, responsive support.”

In the case of systems with real-time
characteristics, a hard, real deterministic
OS would be the right choice, whereas
for applications that require no real-time
behaviour but run a set of applications
with rich user experience, an embedded
Linux with a good graphics library or An-
droid would be the right fit, informs Thilak
Kumar, manager, field engineering, Wind
River Systems. Therefore choosing the right
OS early in the design cycle is very impor-
tant. He says, “If it is not realised, it could

put the entire project at risk,
especially if the OS is un-

able to meet key system
requirements.”

On another note,
Mubeen Jukaku,
technology head,
Emertxe Informa-
tion Technologies,

feels, “Design engi-
neers should be able

to create a design with
effort spent in creating the

application rather than other fac-
tors specific to the OS.”

Now that we know the importance of
choosing the right OS for developing em-
bedded systems, let us take a look at the
parameters to be considered for selecting
the same.

Selecting the OS
Embedded systems are meant to run for
long, and sometimes these are unattended
or non-upgradable. In any case, these
should be robust, reliable and secure.
“Support for device drivers, ease of porting
and extending/configuring the kernel also
matters a lot if devices are peripheral-rich

Abhishek A. Mutha
is a senior technical
correspondent at EFY

EmbEddEd

37www.eFymag.com electronics For you | February 2015

and you have future plans of upgrad-
ing the hardware,” says Jukaku. For
power management, the OS should
be able to provide power-saving
features, like suspend/wake-on-
interrupts. He adds, “Some other fac-
tors include availability of software
protocols and development libraries,
which could be specific to the ap-
plication area. The level of vendor/
community support for the OS also
needs to be high.”

While designing an embedded
system, parameters such as com-
puting power, memory, electrical
power, real-time behaviour, regula-
tory guidelines, connectivity, safety,
security and manageability should
also be considered while selecting an
OS. Citing an example, Kumar says,
“If you are designing a life-critical
device, such as a pacemaker, then the
OS would need to be deterministic,
small and extremely power efficient.”
He adds, “If you are designing an
avionics system, it would still need
to be power efficient but not as much
as the pacemaker. For sub-systems,
meeting safety requirements outlined
by the regulatory authority is one of
the most important requirements and
a certified/certifiable OS would be
more appropriate.”

For developers, real-time oper-
ating system (RTOS) selection has
traditionally been a matter of prefer-
ence and convenience, as they tend
to look at compatibility with their

choice of compilers, debuggers and
other development tools, informs
Prasad Suri, AVP-sales, product
engineering services, ValueLabs. He
says, “Many use integrated develop-
ment environments (IDEs) that en-
able them to develop a wider range
of RTOSs.”

Another critical factor for the
success of a project is the selection

of an OS that ensures right time to
market for the application. Suri adds,
“RTOSes that offers simple system
services, intuitive naming conven-
tions, documentation, good support
and availability of full source code
should be preferred as these charac-
teristics enable developers to become
productive in a short period and com-
plete projects on schedule.”

Important parameters to consider before finalising an OS
Responsiveness. The OS-scheduling algorithm, interrupt latency and context switch
times will significantly define the responsiveness and determinism of the system. The
most important consideration is the kind of response desired (Is a hard real-time response
required?). This means that there are precisely-defined deadlines that, if not met, result
in system failure. Alternatively, would a non-deterministic, soft real-time response be
appropriate? In this case, there are no guarantees to when each task will be completed.

Available system resources. Micro-kernels are designed to work using minimum
system resources and provide limited but essential task-scheduling functionality. Micro-
kernels generally deliver a hard real-time response, and are used extensively with embedded
microprocessors with limited random access memory (RAM)/read only memory (ROM)
capacity, but can also be appropriate for larger embedded processor systems.

Alternatively, a full-featured OS, like Linux or WinCE, could be used. These provide a
feature-rich OS environment, normally supplied with drivers, graphical user interfaces (GUIs)
and middle-ware components. Full-featured OSs are generally less responsive, require more
memory and more processing power than micro-kernels, and are mainly used on powerful
embedded processors where system resources are plentiful.

Middle-ware and drivers. The OS supplier should be able to provide the middle-ware
and drivers you require, integrated with the OS and your target hardware. The vendor should
also be in a position to provide support and ultimately take responsibility for the complete
package.

Open source or professionally-licensed. There are many widely-used, free open
source OSs available, distributed under general-public licence (GPL) or modified-GPL
licences. However, these licences may contain copy-left restrictions and offer little
protection. Professionally-licensed products remove the copy-left restrictions, offer full
intellectual property (IP) infringement indemnification and warranties. In addition, you have
a single company providing support and taking responsibility for the quality of the product.

Cost. A proprietary OS results in increased cost. For instance, Windows-enabled phones
require licence pay-outs to Microsoft, thereby pushing up the cost of the product. Open
source is free. Many companies have customised open source to a high degree and charge
premium for further customisation.

Functionality levels. In terms of functions, permitting back and forth data transfer
rather than only one-way would be beneficial for your embedded design. Your design is
further benefited if the OS provides dynamics during run-time, supports functions to handle
interrupt requests, handles multiple tasks, supports multiple platforms/architecture and is
highly stable and secure. If not, it significantly increases the development time and resources
required.

Flexibility. A proprietary OS licence will not permit actual alteration of the OS itself,
whereas open source OSs are open to complete alteration as per the need of the hour, as
many times as required.

Quality. What emphasis does the OS supplier place on quality within his or her
organisation? Quality is more than just a coding standard. Are correct procedures in place
to guarantee the quality of future products and support? Well-managed companies that take
quality seriously tend to be ISO 9001 certified.

Safety certification. Pre-certified and certifiable OSs are available for applications that
require certification to international design standards, such as DO-178C and IEC 61508.
These OSs provide key safety features, and the design evidence required by certification
bodies to confirm that the process used to develop the OS meets the relevant design
standard.

—Contributions from Andrew Longhurst, engineering and business development
manager, Wittenstein High Integrity Systems, and Neeraj Saraf, CEO, Seal Technologies

It is hard enough
developing embedded
projects and you do not
want to be struggling with
OS-related problems as
well. The OS must be a
trusted component that
the developer can rely
on, supported by
in-depth training and
good, responsive support

EmbEddEd

38 February 2015 | electronics For you www.eFymag.com

Trends in selection of an OS
“We have seen an increase in the use
of multi-core devices,” notes Long-
hurst. This presents an interesting
challenge to OS suppliers, as the OS
also needs to support core-to-core
communication and asymmetrical
and/or symmetrical processing mod-
els. He adds, “The type of OS support
required is highly dependent upon
the architecture of the application.
Therefore a one-size-fits-all approach
is not appropriate, as each solution
will require a certain amount of cus-
tomisation to achieve an optimum
design.”

Another obvious trend is related
to the Internet of Things (IoT) or
machine-to-machine (M2M) commu-
nication, where embedded devices
that existed in isolation in the past
need to be connected now. Kumar
says, “Connectivity is essential
for better manageability of assets,
which allows businesses to move
from a device-centric model to a
service-oriented model. With con-
nectivity, there is also the threat of
security that needs to be addressed.”

The other very prominent trend
is software defined networking

(SDN) and network function vir-
tualisation (NFV). He adds, “This
is driving consolidation of efforts
in the networking and telecom-
munication markets where deliver-
ing carrier-grade reliability, while
also achieving high-performance
throughput with minimal latency, is
absolutely essential.”

Platform era. There has always
been a need to tailor-make embed-
ded OSes for specific application
domains. Many times this is like
re-inventing the wheel and often un-
necessary. Jukaku notes, “Recently,
there has been a trend in building do-
main-specific OSes or software stacks
that consist of the OS, application
stack, framework and development
environments—commonly known
as platform.” Citing an example, he
explains, “In the automotive indus-
try, there is automotive-grade Linux,
which is a Linux based software
stack for the connected car. Google is
also bringing Android to the car with
Android auto. Similarly, in the IoT
space, ARM has come up with mbed
OS for IoT devices.”

Adoption of open source. An-
other trend seen is the wide adop-

Point of view: Why Linux as an OS?
Linux is the primary choice for embedded systems developed at Emertxe because it is
very robust, reliable, secure and scalable. It is a highly configurable, open source OS with
plenty of development tools and application packages available. Board-support packages
(BSP) and drivers are available for many platforms in the vanilla kernel. Adding support for
new platforms/devices is also easy. You get community support, which is often better than
vendor support.

With this, the focus can be on building the application without getting concerned about
the functionality of the underlying OS.

—Mubeen Jukaku, technology head, Emertxe Information Technologies

Major contributors to this report

Prasad Suri
AVP-sales, product

engineering services,
ValueLabs

Andrew Longhurst
engineering and

business development
manager, Wittenstein

High Integrity Systems

Mubeen Jukaku
technology head,

Emertxe Information
Technologies

Neeraj Saraf
chief executive

officer, Seal
Technologies

Thilak Kumar
manager,

field engineering,
Wind River Systems

If you are designing a
life-critical device, such
as a pace maker, then
it would need to be
deterministic, small and
extremely power efficient.
In this case, a highly
deterministic operating
system that can run
with minimal computing
power and memory is
appropriate

tion of open source software in the
embedded space. Jukaku says, “Or-
ganisations are adopting open source
software because of their reliability,
stability, accuracy, cost, openness
and support.”

Choose wisely, build effectively
It is not only the OS functional-
ity and features that you will need
to consider, but also the licensing
model that will work best for your
project’s budget and the company’s
return on investment. Longhurst
says, “The company behind the OS
is just as important as selecting the
correct OS itself.” He adds, “Ide-
ally you want to build a relationship
with the OS supplier that can sup-
port not only your current product
but also products of the future. To
do this, you need to select a proac-
tive supplier with a good reputation,
working with leading silicon manu-
facturers to ensure they can support
the latest processors and tools.”
Trust, quality of product and quality
of support is everything.

From skill point of view, Jukaku
says, “Understanding the architecture
of the OS, integrating appropriate
board-support packages, hardware
interfacing and customising, and
tuning for specific needs are all very
important to have.” These skills
make the OS easier for a new product
designer to get started with.

