Developing a Complete Embedded IoT Solution Using Mongoose OS

Mubeen Jukaku

Syed Adil

Emertxe, Bangalore

IoT Architecture

IoT - Definition

"The network of physical objects that contain embedded technology to communicate and interact with their internal states or the external environment."

Source: Gartner

IoT - Reference Architecture

Use Case

Lockers Somethings to ponder on -Is my bank locker safe? –Is it possible that lockers are accessed without our knowledge? Is it possible so how we come to know about it?

Smart Lockers Device Device Device Device

MERTXE

Smart Lockers Device Device Device Device Access Point

Smart Lockers - Actors

- •Customers:-
- -Every time the locker is opened the user gets an SMS / E-Mail
- .Control Room :-
- -Based on the access time the control room gets the SOS to take appropriate access
- Insurance Providers:-
- -Upon subscribing to the required nodes the insurance providers get the intimation of theft or closure of the locker facility

IoT Hardware / Software Selection

- Security requirements
- •Ease of development
- Data acquisition, processing and storage requirements
- •Connectivity requirements
- Power requirements
- •Physical device design
- •Cost requirements

NodeMCU ESP32

NodeMCU ESP32 - Architecture

NodeMCU ESP32 - Peripherals

ESP32 Module USB Interface Serial-USB Converter Chip 5 Reset Key 6 Boot Key 7 User LED 8 GPIOs

NodeMCU ESP32 - Development Support

Introduction to Mongoose OS

Introduction to Mongoose OS (MOS)

- •An Open source OS for IoT
- Started as embedded web server. Expanded to an IoT OS
- Dual License, GPL or Commercial
- •Development in C / C++ / JS
- •Tool chain support on Windows, Linux, MacOS

MOS - Supported MCUs

•STMicro : STM32 F4, L4, F7

.TI : CC3200, CC3220

•Espressif : ESP32, ESP8266

MOS - IoT Cloud Integration

- •Amazon AWS IoT
- •Microsoft Azure IoT
- .Google IoT Core
- .IBM Watson IoT
- •Private MQTT / Rest Backends

MOS - Architecture AWS / Azure / Google etc., (Cloud Backend) TLS1.2, Mutual TLS Native OTA Support HTTP, MQTT, Websoket, CoAP Remote Management Wifi, Ethernet, BLE **Device Logic (Application Code) Mongoose OS Core Mongoose OS Libraries** Firmware code can use Any functionality from Network, Cloud Support, Drivers, RPC, OTA, etc., Timers, Events, etc., The native SDK **Native SDK** e.g, STM32 Cube, TI SDK, ESP-IDF, etc.,

TI CC 3220, 3200

STM32 L4, F4, F7

ESP32, ESP8266

MOS - Development Setup

MOS - Development Setup

- Download and Install MOS
- Understanding MOS User Interface
- •Application (Blinky)
- .mos.yml
- Building the firmware
- •Flashing the firmware
- The output

MOS - Download

MOS - Application

mos clone https://github.com/mongoose-os-apps/demo-js app1

MOS - Application - Blinky

mos build mos flash

AWS Overview

AWS

- Amazon Web Services
- Secure cloud services platform
- .Offers to
- -Compute power
- –Database storage
- -Content delivery
- -and other functionality to help businesses scale and grow

AWS - Why?

Source: Gartner (July 2019)

MERTXE

AWS - Why?

AWS - Features

- •A Platform for Virtually Every Use Case
- Deep Features and getting deeper by the day
- Security Recognized as Stronger than On-premises
- Deep Visibility into Compliance and Governance

AWS - Reason to Choose

- •Flexible, Scalable and Reliable
- •Good Pricing, and interesting free tiers!
- •Good presence, with atleast 25 geographic locations
- •Customization
- Security
- •and many more ...

MQTT Overview

MQTT - What?

- •Machine-to-Machine(M2M) and IoT connectivity protocol
- Lightweight messaging protocol which works with a serverbased publish subscribe mechanism
- •Runs on the top of TCP/IP protocol suite
- Lighter than HTTP 1.1 and HTTP/2 protocols
- Popular among IoT, M2M, Embedded Projects

MQTT - How? Thing2 (Station) Subscribe Thing1 **Broker** (Station) **Publish** (Gateway) Publish Subscribe Thing3 (Station)

MQTT - Why?

- One-to-many distribution
- Ideal for constrained networks
- •Supports QoS (3 Levels)
- •For lower footprint and low power devices
- •Simple implementation with set of commands to CONNECT, PUBLISH, SUBSCRIBE and DISCONNECT.
- Supports "Will" on abnormal disconnection

Use Case Implementation

Mongoose OS + AWS IoT Core: Steps

- •Create an AWS Account / User
- Install AWS CLI and Setup credentials
- Setup NODEMCU device for AWS using mos
- •Build an app using AWS IoT and AWS services

Application Architecture

Trigger SNS

End to end IoT solution using Mongoose OS

Thank You