
Tournament Trees

Winner trees.

Loser Trees.

Winner Trees
Complete binary tree with n external 

nodes and n - 1 internal nodes.

External nodes represent tournament 
players.

Each internal node represents a match 
played between its two children; 
the winner of the match is stored at 
the internal node.

Root has overall winner.



Winner Tree For 16 Players

player match node

Winner Tree For 16 Players
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Smaller element wins => min winner tree.
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Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

height is log2 n (excludes player level)
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Complexity Of Initialize

• O(1) time to play match at each match node.

• n - 1 match nodes.

• O(n) time to initialize n player winner tree.



Applications

Sorting.

Put elements to be sorted into a winner 
tree.

Repeatedly extract the winner and 
replace by a large value.

Sort 16 Numbers
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Sort 16 Numbers
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Time To Sort

• Initialize winner tree.
� O(n) time

• Remove winner and replay.
� O(log n) time

• Remove winner and replay n times.
� O(n log n)time

• Total sort time is O(n log n).
• Actually Theta(n log n).



Winner Tree Operations

• Initialize
� O(n) time

• Get winner
� O(1) time

• Remove/replace winner and replay
� O(log n) time

� more precisely Theta(log n)

Replace Winner And Replay
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Replace Winner And Replay
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Opponent is player who lost last match played at this node.

Loser Tree

Each match node stores the match 
loser rather than the match winner.
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Complexity Of Loser Tree 
Initialize

• One match at each match node.

• One store of a left child winner.

• Total time is O(n).

• More preciselyTheta(n).

Winner
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Complexity Of Replay

• One match at each level that has a match 
node.

• O(log n)

• More preciselyTheta(log n).

More Tournament Tree 
Applications

• k-way merging of runs during an external 
merge sort

• Truck loading



Truck Loading

� n packages to be loaded into trucks

� each package has a weight

� each truck has a capacity of c tons

� minimize number of trucks

Truck Loading

n = 5 packages

weights [2, 5, 6, 3, 4] 

truck capacityc = 10

Load packages from left to right. If a package 
doesn’t fit into current truck, start loading a 
new truck.



Truck Loading

n = 5 packages

weights [2, 5, 6, 3, 4] 

truck capacityc = 10

truck1 = [2, 5]

truck2 = [6, 3]

truck3 = [4]

uses 3 trucks when 2 trucks suffice

Truck Loading

n = 5 packages

weights [2, 5, 6, 3, 4] 

truck capacityc = 10

truck1 = [2, 5, 3]

truck2 = [6, 4]



Bin Packing

• n items to be packed into bins

• each item has a size

• each bin has a capacity of c

• minimize number of bins

Bin Packing

Truck loading is same as bin packing.
Truck is a bin that is to be packed (loaded).
Package is an item/element.

Bin packing to minimize number of bins is NP-hard.
Several fast heuristics have been proposed.



Bin Packing Heuristics

• First Fit.
� Bins are arranged in left to right order.
� Items are packed one at a time in given order.
� Current item is packed into leftmost bin into 

which it fits.
� If there is no bin into which current item fits, 

start a new bin.

First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack red item into first bin.



First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack blue item next.

Doesn’t fit, so start a new bin.

First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10



First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack yellow item into first 
bin.

First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack green item.

Need a new bin.



First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Not optimal.

2 bins suffice.

Bin Packing Heuristics

• First Fit Decreasing.
� Items are sorted into decreasing order.

� Then first fit is applied.



Bin Packing Heuristics

• Best Fit.
� Items are packed one at a time in given order.
� To determine the bin for an item, first 

determine setSof bins into which the item fits.
� If S is empty, then start a new bin and put item 

into this new bin.
� Otherwise, pack into bin ofS that has least 

available capacity.

Bin Packing Heuristics

• Best Fit Decreasing.
� Items are sorted into decreasing order.

� Then best fit is applied.



Performance

• For first fit and best fit:
Heuristic Bins <= (17/10)(Minimum Bins) + 2

• For first fit decreasing and best fit 
decreasing:
Heuristic Bins <= (11/9)(Minimum Bins) + 4

Complexity Of First Fit

Use a max tournament tree in which 
the players aren bins and the value 
of a player is the available capacity 
in the bin.

O(n log n), where n is the number of 
items.


