
Tournament Trees

Winner trees.

Loser Trees.

Winner Trees
Complete binary tree with n external 

nodes and n - 1 internal nodes.

External nodes represent tournament 
players.

Each internal node represents a match 
played between its two children; 
the winner of the match is stored at 
the internal node.

Root has overall winner.



Winner Tree For 16 Players

player match node

Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

Smaller element wins => min winner tree.

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1



Winner Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

height is log2 n (excludes player level)

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Complexity Of Initialize

• O(1) time to play match at each match node.

• n - 1 match nodes.

• O(n) time to initialize n player winner tree.



Applications

Sorting.

Put elements to be sorted into a winner 
tree.

Repeatedly extract the winner and 
replace by a large value.

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Sorted array.

1



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6 5 3 2 4 2 5

3 1 2 2

1
2

1

Sorted array.

1

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 2 4 2 5

3 2 2

1
2

1

Sorted array.

1



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 2 4 2 5

3 2 2

3
2

1

Sorted array.

1

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 2 4 2 5

3 2 2

3
2

2

Sorted array.

1



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 2 4 2 5

3 2 2

3
2

22

2

Sorted array.

1 2

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 2 5

3 2 2

3
2

22

2

Sorted array.

1 2



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 2 5

3 4 2

3
2

22

2

Sorted array.

1 2

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 2 5

3 4 2

3
2

22

2

Sorted array.

1 2



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 2 5

3 4 2

3
2

22

2

Sorted array.

1 2

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 2 5

3 4 2

3
2

2

Sorted array.

1 2 2



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 5 5

3 4 2

3
2

2

Sorted array.

1 2 2

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 5 5

3 4 5

3
2

2

Sorted array.

1 2 2



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 5 5

3 4 5

3
4

2

Sorted array.

1 2 2

Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 5 5

3 4 5

3
4

3

Sorted array.

1 2 2



Sort 16 Numbers

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6

3

5 3 6 4 5 5

3 4 5

3
4

3

Sorted array.

1 2 2 3

Time To Sort

• Initialize winner tree.
� O(n) time

• Remove winner and replay.
� O(log n) time

• Remove winner and replay n times.
� O(n log n)time

• Total sort time is O(n log n).
• Actually Theta(n log n).



Winner Tree Operations

• Initialize
� O(n) time

• Get winner
� O(1) time

• Remove/replace winner and replay
� O(log n) time

� more precisely Theta(log n)

Replace Winner And Replay

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Replace winner with 6.



Replace Winner And Replay

4 3 6 8 6 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Replay matches on path to root.

Replace Winner And Replay

4 3 6 8 6 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Replay matches on path to root.



Replace Winner And Replay

4 3 6 8 6 5 7 3 2 6 9 4 5 2 5 8

3 6 1 3 2 4 2 5

3 1 2 2

1
2

1

Opponent is player who lost last match played at this node.

Loser Tree

Each match node stores the match 
loser rather than the match winner.



Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

3

8

Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

1

7



Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

1

6

2

9

Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

2

8

1

6

4

9



Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

1

6

4

9

Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

1

6

4

9



Min Loser Tree For 16 Players

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

2

6

4

9

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

2

6

4

9

1 Winner



Complexity Of Loser Tree 
Initialize

• One match at each match node.

• One store of a left child winner.

• Total time is O(n).

• More preciselyTheta(n).

Winner

4 3 6 8 1 5 7 3 2 6 9 4 5 2 5 8

4

6

8

3

5

3

7

2

5

5

8

2

6

4

9

1

Replace winner with 9 and replay matches.

9

5

9

3

3

2



Complexity Of Replay

• One match at each level that has a match 
node.

• O(log n)

• More preciselyTheta(log n).

More Tournament Tree 
Applications

• k-way merging of runs during an external 
merge sort

• Truck loading



Truck Loading

� n packages to be loaded into trucks

� each package has a weight

� each truck has a capacity of c tons

� minimize number of trucks

Truck Loading

n = 5 packages

weights [2, 5, 6, 3, 4] 

truck capacityc = 10

Load packages from left to right. If a package 
doesn’t fit into current truck, start loading a 
new truck.



Truck Loading

n = 5 packages

weights [2, 5, 6, 3, 4] 

truck capacityc = 10

truck1 = [2, 5]

truck2 = [6, 3]

truck3 = [4]

uses 3 trucks when 2 trucks suffice

Truck Loading

n = 5 packages

weights [2, 5, 6, 3, 4] 

truck capacityc = 10

truck1 = [2, 5, 3]

truck2 = [6, 4]



Bin Packing

• n items to be packed into bins

• each item has a size

• each bin has a capacity of c

• minimize number of bins

Bin Packing

Truck loading is same as bin packing.
Truck is a bin that is to be packed (loaded).
Package is an item/element.

Bin packing to minimize number of bins is NP-hard.
Several fast heuristics have been proposed.



Bin Packing Heuristics

• First Fit.
� Bins are arranged in left to right order.
� Items are packed one at a time in given order.
� Current item is packed into leftmost bin into 

which it fits.
� If there is no bin into which current item fits, 

start a new bin.

First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack red item into first bin.



First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack blue item next.

Doesn’t fit, so start a new bin.

First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10



First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack yellow item into first 
bin.

First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Pack green item.

Need a new bin.



First Fit

n = 4

weights = [4, 7, 3, 6]

capacity = 10

Not optimal.

2 bins suffice.

Bin Packing Heuristics

• First Fit Decreasing.
� Items are sorted into decreasing order.

� Then first fit is applied.



Bin Packing Heuristics

• Best Fit.
� Items are packed one at a time in given order.
� To determine the bin for an item, first 

determine setSof bins into which the item fits.
� If S is empty, then start a new bin and put item 

into this new bin.
� Otherwise, pack into bin ofS that has least 

available capacity.

Bin Packing Heuristics

• Best Fit Decreasing.
� Items are sorted into decreasing order.

� Then best fit is applied.



Performance

• For first fit and best fit:
Heuristic Bins <= (17/10)(Minimum Bins) + 2

• For first fit decreasing and best fit 
decreasing:
Heuristic Bins <= (11/9)(Minimum Bins) + 4

Complexity Of First Fit

Use a max tournament tree in which 
the players aren bins and the value 
of a player is the available capacity 
in the bin.

O(n log n), where n is the number of 
items.


