

Splay Trees

Outline for Today

● Static Optimality
● Balanced BSTs aren't necessarily optimal!

● Splay Trees
● A self-adjusting binary search tree.

● Properties of Splay Trees
● Why is splaying worthwhile?

● Dynamic Optimality (ITA)
● An open problem in data structures.

Static Optimality

Balanced BSTs

● We've explored balanced BSTs this quarter because
they guarantee worst-case O(log n) operations.

● Claim: Depending on the access sequence, balanced
BSTs may not be optimal BSTs.

1

2

3

4

5

6

7

Balanced BSTs

● We've explored balanced BSTs this quarter because
they guarantee worst-case O(log n) operations.

● Claim: Depending on the access sequence, balanced
BSTs may not be optimal BSTs.

2

5

4

3

6

7

1

Static Optimality

● Let S = { x₁, x₂, …, xₙ } be a set with
access probabilities p₁, p₂, …, pₙ.

● Goal: Construct a binary search tree T*
that minimizes the total expected access
time.

● T* is called a statically optimal binary
search tree.

Static Optimality

● There is an O(n2)-time dynamic programming
algorithm for constructing statically optimal
binary search trees.
● Knuth, 1971

● There is an O(n log n)-time greedy algorithm
for constructing binary search trees whose cost
is within 1.5 of optimal.
● Mehlhorn, 1975

● These algorithms assume that the access
probabilities are known in advance.

Challenge: Can we construct an optimal
BST without knowing the access

probabilities in advance?

The Intuition

● If we don't know the access probabilities
in advance, we can't build a fixed BST
and then “hope” it works correctly.

● Instead, we'll have to restructure the
BST as operations are performed.

● For now, let's focus on lookups; we'll
handle insertions and deletions later on.

Refresher: Tree Rotations

B

A

>B

<A >A
<B

B

A

>B

<A

>A
<B

Rotate Right

Rotate Left

An Initial Idea

● Begin with an arbitrary BST.
● After looking up an element, repeatedly

rotate that element with its parent until it
becomes the root.

● Intuition:
● Recently-accessed elements will be up near

the root of the tree, lowering access time.
● Unused elements stay low in the tree.

The Problem

A

B

C

D

E

The Problem

● The “rotate to root” method might result
in n accesses taking time Θ(n2).

● Why?
● Rotating an element x to the root

significantly “helps” x, but “hurts” the
rest of the tree.

● Most of the nodes on the access path to x
have depth that increases or is
unchanged.

A More Balanced Approach

● In 1983, Daniel Sleator and Robert
Tarjan invented an operation called
splaying.

● Rotates an element to the root of the
tree, but does so in a way that's more
“fair” to other nodes in the tree.

● There are three cases for splaying.

Case 1: Zig-Zig

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

First, rotate p with g
Then, rotate x with p

Continue moving x up the tree

First, rotate p with g
Then, rotate x with p

Continue moving x up the tree

Case 2: Zig-Zag

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

First, rotate x with p
Then, rotate x with g

Continue moving x up the tree

First, rotate x with p
Then, rotate x with g

Continue moving x up the tree

Case 3: Zig

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

Rotate x with r
x is now the root.

Rotate x with r
x is now the root.

(Assume r is the
tree root)

(Assume r is the
tree root)

A

B

C

D

E

F

G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Splaying, Empirically

● After a few splays, we went from a totally
degenerate tree to a reasonably-balanced
tree.

● Splaying nodes that are deep in the tree
tends to correct the tree shape.

● Why is this?
● Is this a coincidence?

Why Splaying Works

● Claim: After doing a splay at x, the
average depth of any nodes on the access
path to x is halved.

● Intuitively, splaying x benefits nodes near
x, not just x itself.

● This “altruism” will ensure that splays
are efficient.

x

p

g

>p
<g

<x
>x
<p

>g

x

p

g

>g
>p
<g

>x
<p

<x

The average depth of x,
p, and g is unchanged.

The average depth of x,
p, and g is unchanged.

These subtrees decrease
in height by one or two.

These subtrees decrease
in height by one or two.

x

p

g

>p

>g
<x

>x
<p

<g

x

g p

<g
>g
<x

>x
<p >p

The average height of x, p,
and g decreases by 1/3.

The average height of x, p,
and g decreases by 1/3.

These subtrees have their
height decreased by one.

These subtrees have their
height decreased by one.

x

r

>p

<x
>x
<p

x

r

<x

>x
<p >p

There is no net
change in the

height of x or r.

There is no net
change in the

height of x or r.

The nodes in this subtree have
their height decreased by one.

The nodes in this subtree have
their height decreased by one.

An Intuition for Splaying

● Each rotation done only slightly
penalizes each other part of the tree (say,
adding +1 or +2 depth).

● Each splay rapidly cuts down the height
of each node on the access path.

● Slow growth in height, combined with
rapid drop in height, is a hallmark of
amortized efficiency.

Some Claims

● Claim 1: The amortized cost of splaying
a node up to the root is O(log n).

● Claim 2: The amortized cost of splaying
a node up to the root can be o(log n) if
the access pattern is non-uniform.

● We'll prove these results later today.

Making Things Easy

● Splay trees provide make it extremely
easy to perform the following operations:
● lookup
● insert
● delete
● predecessor / successor
● join
● split

● Let's see why.

Lookups

● To do a lookup in a
splay tree:
● Search for that

item as usual.
● If it's found, splay

it up to the root.
● Otherwise, splay

the last-visited
node to the root.

Insertions

● To insert a node
into a splay tree:
● Insert the node as

usual.
● Splay it up to the

root.

Join

● To join two trees T₁ and T₂, where all
keys in T₁ are less than the keys in T₂:
● Splay the max element of T₁ to the root.
● Make T₂ a right child of T₁.

T₁ T₂

Split

● To split T at a key k:
● Splay the successor of k up to the root.
● Cut the link from the root to its left child.

T₁ T₂

Delete

● To delete a key k from the tree:
● Splay k to the root.
● Delete k.
● Join the two resulting subtrees.

T₁

k

T₂

The Runtime

● Claim: All of these operations require
amortized time O(log n).

● Rationale: Each has runtime bounded
by the cost of O(1) splays, which takes
total amortized time O(log n).

● Contrast this with red/black trees:
● No need to store any kind of balance

information.
● Only three rules to memorize.

The Tricky Part: Formalizing This

The Cost of a Splay

● We need to prove that splaying is amortized efficient.
● Historically, it has proven hard to analyze splay trees

for several reasons:
● Each lookup can significantly reshape the tree.
● Deliberate lack of structure makes it hard to find invariants

useful in the analysis.

● 30 years after splay trees were invented, we don't
know the answer to the following questions:
● What is the cost of performing n splits on a splay tree with

no intervening operations?
● What is the cost of performing n deque operations on a

splay tree?

Time-Out for Your Questions!

“If computers don't work with binary
numbers, but instead with decimal (base
10) numbers, would we be able to solve

new questions and/or solve old questions
more efficiently? Or would it be a big

headache?”

You can actually use any base with only
constant slowdown! See the paper

“Changing Base without Losing Space”

by Dodis et al for more details.

You can actually use any base with only
constant slowdown! See the paper

“Changing Base without Losing Space”

by Dodis et al for more details.

“Would you consider holding office hours
on Friday, Saturday, or Sunday? By

Monday, many of us will want to have
already made substantial progress on the
pset, but by Thursday many of us won't
have had a chance to really think the

problems over.”

I'll ask the TAs about this.

A note: we received a total of 12 emails
last week with questions. Please feel
free to email us if you have questions!

I'll ask the TAs about this.

A note: we received a total of 12 emails
last week with questions. Please feel
free to email us if you have questions!

Back to CS166!

The Cost of a Splay

● Outline for the rest of today:
● Provide an intuition for the potential function.
● Perform an amortized analysis to justify the

runtime of splay trees.
● Use that analysis to derive powerful results

about splay tree costs.

● Will not do the full analysis here; check
the original paper for more details.

Weighted Path Lengths

● For any node xᵢ in a BST, define the path length of xᵢ,
which we'll denote lᵢ, to be the length of the path from
the root of the tree to xᵢ.

● Associate positive weight wᵢ with each node in the BST.

● The weighted path length of the BST is then

● If the weights are access probabilities, the expected
cost of a lookup in the BST is

∑
i=1

n

wi li

O(1+∑
i=1

n

wi li)

Intuiting Weighted Path Lengths

1 2

3

4 1

3

1

∑
i=1

n

wi li

1

6

15

2 4 1

8

Total: 37

This is the weighted path
length plus the sum of the

weights.

This is the weighted path
length plus the sum of the

weights.

Node Sizes

● For each node x, define the size of x,
denoted s(x), to be the sum of the
weights of x and all its descendants.

● The sum of the sizes of all the nodes
gives the weighted path length of the
tree plus the sum of the weights

● By trying to keep the sum of the node
sizes low, we can try to keep the access
costs in the tree low.

Node Ranks

● Although the sum of the node sizes gives
a good sense for access costs in the tree,
the actual analysis uses a different
quantity.

● Define the rank of a node x, denoted
r(x), to be lg s(x).

● We will use the following potential
function when analyzing splay trees:

Φ=∑
i=1

n

r (xi)

Some Observations

● Let S = { x₁, …, xₙ } be a set of keys in a BST
and let w₁, …, wₙ be the weights on those keys.

● Claim 1: The value of s(t), where t is the tree
root, is constant regardless of the tree shape.
● It's the sum of all the weights in the trees.

● Claim 2: The value of r(t), where t is the tree
root, is constant regardless of the tree shape.
● It's lg s(t), which is the same regardless of the

tree shape.

A Useful Mathematical Fact
Theorem: If x > 0, y > 0, and x + y ≤ 1, then

lg x + lg y ≤ -2.

Proof: We will show that under these constraints,
lg x + lg y achieves a maximum value of -2.

Because lg x + lg y = lg xy and 2k is increasing, we
will equivalently maximize xy.

When x and y are nonnegative, increasing either x or
y will increase xy. Thus the maximum value of xy,
subject to our constraints, occurs when x + y = 1.

If x + y = 1, then xy = x(1 – x). This is maximized
when x = ½ and y = ½, at which point we have
lg x + lg y = lg ½ + lg ½ = -2. Therefore, if x > 0,
y > 0, and x + y ≤ 1, then lg x + lg y ≤ -2. ■

The Theorem

● Theorem: The amortized cost of splaying a node x
in a tree with root t is at most

3(r(t) – r(x)) + 1
● Proof outline: Show the following:

● The amortized cost of a zig-zig or zig-zag is at most
3(r'(x) – r(x)), where r'(x) is the rank of x after the step
and r(x) is the rank of x before the step.

● The amortized cost of a zig is at most 3(r'(x) – r(x)) + 1.
● Summing across all steps, the sum telescopes out to at

most 3(r'(x) – r(x)) + 1.
● At the very end, x is the tree root. Therefore, we know

that r'(x) = r(t), so the total amortized cost is at most
3(r(t) – r(x)) + 1.

The Zig-Zig Case

x

p

g

A B

C

D

x

p

g

C D

B

A

 2 + ΔΦ = 2 + r'(x) + r'(p) + r'(g) – r(g) – r(p) – r(x)
 2 + ΔΦ = 2 + r'(p) + r'(g) – r(p) – r(x)

Goal: Bound the above expression by 3(r'(x) – r(x)). We
will therefore prove that

2 + r'(p) + r'(g) – r(p) – r(x) ≤ 3(r'(x) – r(x))

Equivalently:

r'(p) + r'(g) – r(p) – r(x) – 3r'(x) + 3r(x) ≤ -2

The Zig-Zig Case

≤ r'(p) + r'(g) – r(p) – r(x) – 3r'(x) + 3r(x)
= r'(p) + r'(g) – r(p) – 3r'(x) + 2r(x)
≤ r'(x) + r'(g) – r(p) – 3r'(x) + 2r(x)
= r'(g) – r(p) – 2r'(x) + 2r(x)
≤ r'(g) – r(x) – 2r'(x) + 2r(x)
= r'(g) + r(x) – 2r'(x)
= r(x) – r'(x) + r'(g) – r'(x)

x

p

g

A B

C

D

x

p

g

C D

B

A

The Zig-Zig Case

= r(x) – r'(x) + r'(g) – r'(x)
= lg s(x) – lg s'(x) + lg s'(g) – lg s'(x)
= lg (s(x) / s'(x)) + lg (s'(g) / s'(x))

Claim: s(x) + s'(g) ≤ s'(x)

Therefore, s(x) / s'(x) + s'(g) / s'(x) ≤ 1

So lg (s'(g) / s'(x)) + lg (s(x) / s'(x)) ≤ -2

x

p

g

A B

C

D

x

p

g

C D

B

A

The Zig-Zag and Zig Cases

You're welcome to do
the difficult math

gymnastics if you'd like!

You're welcome to do
the difficult math

gymnastics if you'd like!

What We Just Did

● Theorem: The amortized cost of
performing a splay at x is given by

3(r(t) – r(x)) + 1
● This theorem holds for any choice of

weights we want to assign to the nodes.
● There's a subtle catch, though...

An Important Detail

● Recall: When using the potential method, the
sum of the amortized costs relates to the sum
of the real costs as follows:

● Therefore:

● The actual cost is bounded by the sum of the
amortized costs, plus the drop in potential.

∑
i=1

m

a(opi) = ∑
i=1

m

t (opi) + O(1)⋅(Φm+1−Φ1)

∑
i=1

m

a(opi) + O(1)⋅(Φ1−Φm+1) = ∑
i=1

m

t (opi)

Bounding the Potential Drop

● Let W be the sum of all the weights assigned to
the nodes.

● Then wᵢ ≤ s(xᵢ) ≤ W, so lg wᵢ ≤ r(xᵢ) ≤ lg W.
● The maximum drop in potential purely for node

xᵢ is therefore lg W – lg wᵢ.

● Therefore, the maximum drop in potential is
given by

n lgW − ∑
i=1

n

lgwi

Properties of Splay Trees

● To use the theorem from before, we need
to do three things:
● Assign the weights to the nodes.
● Determine the amortized cost of each

operation on the splay tree.
● Determine the maximum possible drop in

potential from the operations.

● From this overall result, we can
determine the total cost of performing a
series of operations on a splay tree.

Theorem (Balance Theorem): The cost of performing m
operations on an n-node splay tree is O(m log n + n log n).

Proof: The runtime of each operation is bounded by the cost of
O(1) splays, so we'll begin by showing that the amortized
cost of a splay is O(log n).

Assign each node a weight of 1 / n. Then s(t) = 1, so r(t) = 0.
For any node x, we see s(x) ≥ 1 / n, so r(x) ≥ -lg n. The
amortized cost of a splay is at most

 = 3(r(t) – r(x)) + 1
 ≤ 3(0 - (-lg n)) + 1
 ≤ 3 lg n + 1
 = O(log n)

 Additionally, the maximum drop in potential is given by

 So the total cost of performing these m operations is
O(m log n + n log n). ■

n lgW − ∑
i=1

n

lgwi = −∑
i=1

n

lg
1
n

= ∑
i=1

n

lgn = n lgn

Interpreting the Balance Theorem

● The Balance Theorem says that m operations on an
n-node splay tree takes time O(m log n + n log n).

● As long as m ≥ n (reasonable in most circumstances),
the overall runtime will then be O(m log n).

● Via the aggregate method, all operations on splay trees
have amortized cost O(log n).

● However, if some existing tree is given as input and we
only do a few splays, the amortized cost might be much
higher.

A Stronger Result

● Recall: Motivation behind splay trees
was a search for trees that perform
better than O(log n) on skewed
distributions.

● Claim: Splay trees have a runtime that's
extremely close to optimal.

Static Optimality

● Theorem: (Entropy bound) In an optimal BST where
element xᵢ is accessed with probability pᵢ, the expected
cost of a successful search in the tree is

● This is the Shannon entropy of the distribution; it's
lg n if accesses are perfectly uniform and 0 if accesses
are totally skewed.

● Entropy is typically denoted H, so we can express the
entropy bound as follows: the expected cost of a lookup
in an optimal BST is Ω(H).

● You'll prove this lower bound on the problem set.

Ω(∑
i=1

n

−pi lgpi)

Static Optimality Theorem: Let S = { x₁, …, xₙ } be a
set of keys stored in a splay tree. Suppose a series of
lookups is performed where

· every node is accessed at least once and
· all lookups are successful.

 Then the amortized cost of each access is O(1 + H),
where H is the Shannon entropy of the access
distribution.

Interpreting Static Optimality

● If you perform lookups on a splay tree and look
up each element once, the amortized cost of
each lookup is O(1 + H)

● Given the lower bound of Ω(H) for any static
BST, this is close to perfect.

● Amazing fact: Splay trees are never more than
a constant factor slower than any fixed BST for
the given set of elements, assuming that each
element is always looked up at least once.

Theorem (Static Optimality Theorem): Let S = { x₁, …, xₙ }
be a set of keys stored in a splay tree. Suppose a series of
m lookups is performed where all lookups are successful
and every node is looked up at least once. Then the total
access time is O(m + mH), where H is the entropy of the
access probabilities.

Proof: Assign each xᵢ weight pᵢ, where pᵢ is the fraction of the
lookups that access xᵢ. Then s(t) = 1, so r(t) = 0. For any
node xᵢ, we know s(xᵢ) ≥ pᵢ, so r(xᵢ) ≥ lg pᵢ. The amortized
cost of a lookup of xᵢ is therefore at most

3(r(t) – r(xᵢ)) + 1 ≤ -3 lg pᵢ + 1

Since each element is accessed mpᵢ times, the sum of the
amortized lookup times is given by

Additionally, the total drop in potential is given by

Therefore, the total cost is O(m + mH), as required. ■

∑
i=1

n

(mpi(−3lgpi+1)) = m+3m∑
i=1

n

−pi lgpi = m+3m H

n lgW−∑
i=1

n

lgwi ≤ ∑
i=1

n

−lgpi ≤ ∑
i=1

n

−mpi lgpi = m H

Beating Static Optimality

● On many classes of access sequences, splay trees can
outperform statically optimal BSTs

● Example: the working-set theorem says that

If you perform Ω(n log n) successful lookups, the
amortized cost of each successful lookup is

O(1 + log t), where t is the number of searches
since we last looked up the element searched for.

● Another example: the sequential access theorem
says that

If you look up all n elements in a splay tree in
ascending order, the amortized cost of each

lookup is O(1).

An Open Problem: Dynamic Optimality

The BST Model

● Consider a BST with a pointer called the finger,
which points to some element.

● You are allowed to perform the following
operations at any time:
● Move the finger to a left or right child.
● Move the finger to a parent.
● Rotate the node pointed at by the finger with its

parent.
● Return the node pointed at by the finger.

● Note that the splay tree fits into this model; the
finger starts at a root, descends to a node, then
splays back up to the top.

Dynamic Optimality

● A BST that fits into this model is called valid if it
correctly answers every lookup query performed
on it.

● The cost of a valid BST on a series of queries
(denoted c(T, Q)) is the number of elementary
operations performed while answering queries Q.

● We'll say that the cost of a sequence of queries Q,
denoted c(Q), is min{c(T, Q)} over all valid
dynamic BSTs T.

Competitive Ratios

● A BST T is said to be f(n)-competitive if the
following holds for any series of queries Q:

c(T, Q) ≤ f(n) · c(Q)

● In other words, the cost T incurs when
answering any series of queries Q is at most
f(n) times the cost of the optimal BST for Q.

What We Know

● Known: Statically-optimal BSTs are
O(log n)-competitive.

● Known: There are data structures (like the
Tango tree) that are O(log log n)-competitive.

● Unknown: Are there O(1)-competitive BST data
structures?

● Known: A recently-developed data structure is
O(1)-competitive iff there exists an
O(1)-competitive BST data structure.

● Conjectured: Splay trees are O(1)-competitive.

Next Time

● Tries
● A fundamental data structure for storing

strings.

● Aho-Corasick String Matching
● A fast data structure for finding occurrences

of strings in a large text

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

