
E M E R T X E I N F O R M A T I O N TE C H N O L O G I E S (P) L T D

EMERTXE TRAINING PROJECT DOCUMENTATION FRAMEWORK

REQUIREMENTS & DESIGN DOCUMENT

Module – Data Structures

Red Black Tree

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

Contents
 1 Abstract... 1

 2 Requirements.. 2

 3 Prerequisites.. 3

 4 Design... 4

 5 Sample Output... 6

 6 Artifacts.. 8

 6.1 Skeleton Code..8

 6.2 References...8

EIDTC RS-V02 Page i

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

 1 Abstract
A red–black tree is a kind of self-balancing binary search tree. Each node of the binary tree

has an extra bit, and that bit is often interpreted as the color (red or black) of the node. These

color bits are used to ensure the tree remains approximately balanced during insertions and

deletions.

Balance is preserved by painting each node of the tree with one of two colors (typically called

‘red’ or ‘black’) in a way that satisfies certain properties, which collectively constrain how

unbalanced the tree can become in the worst case. When the tree is modified, the new tree is

subsequently rearranged and repainted to restore the coloring properties. The properties are

designed in such a way that this rearranging and recoloring can be performed efficiently.

EIDTC RDD-V02 Page 1

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

 2 Requirements
In addition to the requirements imposed on a binary search tree the following must be

satisfied by a red–black tree:

1. Each node is either red or black.

2. The root is black. This rule is sometimes omitted. Since the root can always be changed

from red to black, but not necessarily vice versa, this rule has little effect on analysis.

3. All leaves (NIL) are black.

4. If a node is red, then both its children are black.

5. Every path from a given node to any of its descendant NIL nodes contains the same

number of black nodes. Some definitions: the number of black nodes from the root to a

node is the node’s black depth; the uniform number of black nodes in all paths from root to

the leaves is called the black-height of the red–black tree.

Operations to be Implemented:

1. Insertion

2. Deletion

3. Search

4. Find Min

5. Delete Min

6. Find Max

7. Delete Max

•

EIDTC RDD-V02 Page 2

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

 3 Prerequisites
• Pointers, Structures and Dynamic Memory Handling

• Trees

EIDTC RDD-V02 Page 3

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

 4 Design

Function Insert

Prototype int insert(tree_t **root, data_t item);

Input Parameters • root – Pointer to the root node of the Red Black tree.

• item – New data to be inserted into the Red Black tree.

Return Values Status (SUCCESS / FAILURE)

Function Delete

Prototype int delete(tree_t **root, data_t item);

Input Parameters • root – Pointer to the root node of the Red Black tree.

• item – Data to be deleted from the Red Black tree.

Return Values Status (SUCCESS / FAILURE)

Function Find Minimum

Prototype int find_minimum(tree_t **root, data_t *min);

Input Parameters • root – Pointer to the root node of the Red Black tree.

• min – Minimum data present in the tree is collected via this pointer.

Return Values Status (SUCCESS / FAILURE)

Function Find Maximum

Prototype int find_maximum(tree_t **root, data_t *max);

Input Parameters • root – Pointer to the root node of the Red Black tree.

• min – Maximum data present in the tree is collected via this pointer.

Return Values Status (SUCCESS / FAILURE)

Function Delete Minimum

Prototype int delete_minimum(tree_t **root);

Input Parameters • root – Pointer to the root node of the Red Black tree.

Return Values Status (SUCCESS / FAILURE)

EIDTC RDD-V02 Page 4

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

Function Delete Maximum

Prototype int delete_maximum(tree_t **root);

Input Parameters • root – Pointer to the root node of the Red Black tree.

Return Values Status (SUCCESS / FAILURE)

EIDTC RDD-V02 Page 5

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

 5 Sample Output

EIDTC RDD-V02 Page 6

Fig 5 1: Tree Creation, Display and Search Node

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

EIDTC RDD-V02 Page 7

Fig 5 2: Finding Minimum, Maximum and Deletion of Node

Fig 5 3: Delete Maximum Node

Emertxe Information Technologies (P) Ltd REQUIREMENTS & DESIGN DOCUMENT

Red Black Tree 0.1 16-06-2014

 6 Artifacts
 6.1 Skeleton Code

• www.emertxe.com/content/data-structures/code/redblacktree_src.zip

 6.2 References

• https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

EIDTC RDD-V02 Page 8

http://www.emertxe.com/content/data-structures/code/redblacktree_src.zip
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

	1 Abstract
	2 Requirements
	3 Prerequisites
	4 Design
	5 Sample Output
	6 Artifacts
	6.1 Skeleton Code
	6.2 References

