
csci 210: Data Structures

Priority Queues and Heaps

Summary

• Topics
• the Priority Queue ADT
• Priority Queue vs Dictionary and Queues
• implementation of PQueue

• linked lists
• binary search trees
• heaps

• Heaps

• READING:
• GT textbook chapter 8.1, 8.2 and 8.3

Priority Queues

• A Priority Queue is an abstract data structure for storing a collection of prioritized elements
• The elements in the queue consist of a value v with an associated priority or key k

• element = (k,v)
• A priority queue supports

• arbitrary element insertion: insert value v with priority k
• insert(k, v)

• delete elements in order of their priority: that is, the element with the smallest priority can
be removed at any time

• removeMin()
• Priorities are not necessarily unique: there can be several elements with same priority

• Examples: store a collection of company records
• compare by number of employees
• compare by earnings

• The priority is not necessarily a field in the object itself. It can be a function computed based
on the object. For e.g. priority of standby passengers is determined as a function of frequent
flyer status, fare paid, check-in time, etc.

Priority Queues

• Examples
• Queue of jobs waiting for the processor
• Queue of standby passengers waiting to get a seat
• ...

• Note: the keys must be “comparable” to each other

• PQueue ADT
• size()

• return the number of entries in PQ
• isEmpty()

• test whether PQ is empty
• min()

• return (but not remove) the entry with the smallest key
• insert(k, x)

• insert value x with key k
• removeMin()

• remove from PQ and return the entry with the smallest key

Priority Queue example
(k,v) key=integer, value=letter

• insert(5,A)

• insert(9,C)

• insert(3,B)

• insert(7,D)

• min()

• removeMin()

• size()

• removeMin()

• removeMin()

• removeMin()

PQ={}

PQ={(5,A)}

PQ={(5,A), (9,C)}

PQ={(5,A), (9,C), (3,B)}

PQ={(5,A), (7,D), (9,C), (3,B)}

return (3,B)

return 3

return (5,A) PQ={(7,D), (9,C)}

PQ = {(5,A), (7,D), (9,C)}

return (7,D) PQ={(9,C)}

return (9,C) PQ={}

Sorting with a Priority Queue

• An important application of a priority queue is sorting

• PriorityQueueSort (collection S of n elements)
• put the elements in S in an initially empty priority queue by means of a series of n

insert() operations on the pqueue, one for each element
• extract the elements from the pqueue by means of a series of n removeMin() operations

• pseudocode for PriorityQueueSort(S)
• input: a collection S storing n elements
• output: the collection S sorted
• P = new PQueue()
• while !S.isEmpty() do

• e = S.removeFirst()
• P.insert(e)

• while !P.isEmpty()
• e = P.removeMin()
• S.addLast(e)

Priority queue implementations

• unsorted linked list
• fast insertions, slow deletions

• sorted linked list
• fast deletions, slow insertions

• binary search trees

• (binary) heaps

Heaps

• A heap is an array viewed as a complete binary tree, level by level
• As a consequence, children positions can be computed without storing references

• root has index 1
• left(i) = 2i
• right(i) = 2i+1
• parent(i) = i/2

• and such that each node satisfies the heap property:
• the keys of v’s children are >= the key of v

• As a consequence, the keys encountered on a root-to-leaf traversal are in increasing order
(or equal); the smallest key is stored at the top.

Heaps

• Proposition: A heap T storing n elements has height h = lg2 n.

• insert(k,v)
• insert it at last position in the heap, and “trickle” it up (swap node with parent up the leaf-

root path)

• deleteMin()
• take the last element and put it in the root
• this will violate the heap property, so “trickle” it down: swap the node with the smaller if

its 2 children, and repeat

• insert and deleteMin take O(h) = O(lg n)

Heapsort

• sort with a heap
• insert all elements
• deleteMin n times

• time: O(n lg n)

• Optimizations:

• Constructing the heap can be improved so that it takes O(n) time (instead of O(n lg n)), but the
overall running time of the heapsort stays the same

• idea: convert the array into a heap bottom up
•

• the whole sort can be done “in place” (assume the input is stored in an array A; you want to re-
arrange the array A to be in sorted order, without creating a new array.)

• use a max-heap instead of a min-heap (the heap property is reversed and the max element
is stored at top)

• repeatedly deleteMax
• as discussed, deleteMax swaps A[1] with A[n] , then A[2] with A[n-1], and so on

• the heap shrinks by one every time, and at the end A[] is sorted

