
AVL Trees

(AVL Trees) Data Structures and Programming Spring 2018 1 / 28



Balanced Binary Tree

The disadvantage of a binary search tree is that its height can be as
large as N-1
This means that the time needed to perform insertion and deletion
and many other operations can be O(N) in the worst case
We want a tree with small height
A binary tree with N node has height at least Θ(log N)

Thus, our goal is to keep the height of a binary search tree O(logN)

Such trees are called balanced binary search trees. Examples are AVL
tree, red-black tree.

(AVL Trees) Data Structures and Programming Spring 2018 2 / 28



AVL Tree (Georgy Adelson-Velsky and Evgenii
Landis’ tree, 1962)

Height of a node
I The height of a leaf is 1. The height of a null pointer is zero.
I The height of an internal node is the maximum height of its

children plus 1

Note that this definition of height is different from the one we defined
previously (we defined the height of a leaf as zero previously).

(AVL Trees) Data Structures and Programming Spring 2018 3 / 28



AVL Tree (Cont’d)

An AVL tree is a binary search tree in which for every node in the
tree, the height of the left and right subtrees differ by at most 1.

(AVL Trees) Data Structures and Programming Spring 2018 4 / 28



AVL Tree (Cont’d)

Let x be the root of an AVL tree of height h
Let Nh denote the minimum number of nodes in an AVL tree of
height h
Clearly, Ni ≥ Ni−1 by definition
We have

Nh ≥ Nh−1 + Nh−2 + 1 ≥ 2Nh−2 + 1 > 2Nh−2

By repeated substitution, we obtain the general form

Nh > 2iNh−2i

The boundary conditions are: N1 = 1 and N2 = 2. This implies
that h = O(logNh).
More precisely, the height of an n-node AVL tree is approx.
1.44 log2 n.
Thus, many operations (searching, insertion, deletion) on an AVL
tree will take O(logN) time.

(AVL Trees) Data Structures and Programming Spring 2018 5 / 28



Smallest AVL Tree

(AVL Trees) Data Structures and Programming Spring 2018 6 / 28



Rotations

When the tree structure changes (e.g., insertion or deletion), we
need to transform the tree to restore the AVL tree property.
This is done using single rotations or double rotations.
Since an insertion/deletion involves adding/deleting a single
node, this can only increase/decrease the height of some subtree
by 1
Thus, if the AVL tree property is violated at a node x, it means that
the heights of left(x) and right(x) differ by exactly 2.
Rotations will be applied to x to restore the AVL tree property.

(AVL Trees) Data Structures and Programming Spring 2018 7 / 28



Insertion

First, insert the new key as a new leaf just as in ordinary binary
search tree
Then trace the path from the new leaf towards the root. For each
node x encountered, check if heights of left(x) and right(x) differ
by at most 1.
If yes, proceed to parent(x). If not, restructure by doing either a
single rotation or a double rotation [next slide].
For insertion, once we perform a rotation at a node x, we won’t
need to perform any rotation at any ancestor of x.

(AVL Trees) Data Structures and Programming Spring 2018 8 / 28



Single rotation

Basic operation used in AVL trees: A right child could legally have its
parent as its left child.

(AVL Trees) Data Structures and Programming Spring 2018 9 / 28



General Case: Insert Unbalances

(AVL Trees) Data Structures and Programming Spring 2018 10 / 28



Properties of General Insert + Single Rotation

Restores balance to a lowest point in tree where imbalance occurs

After rotation, height of the subtree (in the example, h+1) is the
same as it was before the insert that imbalanced it

Thus, no further rotations are needed anywhere in the tree!

(AVL Trees) Data Structures and Programming Spring 2018 11 / 28



Double rotation

(AVL Trees) Data Structures and Programming Spring 2018 12 / 28



General Double Rotation

Initially: inserting into X unbalances tree (root height goes to
h + 3)
”Zig-zag” to pull up c - restores root height to h + 2, left subtree
height to h

(AVL Trees) Data Structures and Programming Spring 2018 13 / 28



Another Double Rotation Case

Initially: inserting into Y unbalances tree (root height goes to h + 2)
”Zig-zag” to pull up c - restores root height to h + 1, left subtree
height to h

(AVL Trees) Data Structures and Programming Spring 2018 14 / 28



Example - Rebalance after Insertion

(AVL Trees) Data Structures and Programming Spring 2018 15 / 28



Another Example

⇓

(AVL Trees) Data Structures and Programming Spring 2018 16 / 28



Another Example (Cont’d)

⇓

(AVL Trees) Data Structures and Programming Spring 2018 17 / 28



Deletion (Really Easy Case)

(AVL Trees) Data Structures and Programming Spring 2018 18 / 28



Deletion (Pretty Easy Case)

(AVL Trees) Data Structures and Programming Spring 2018 19 / 28



Deletion (Pretty Easy Case cont’d)

(AVL Trees) Data Structures and Programming Spring 2018 20 / 28



Deletion (Hard Case #1)

(AVL Trees) Data Structures and Programming Spring 2018 21 / 28



Single Rotation on Deletion

What is different about deletion than insertion?

(AVL Trees) Data Structures and Programming Spring 2018 22 / 28



Deletion (Hard Case)

(AVL Trees) Data Structures and Programming Spring 2018 23 / 28



Double Rotation on Deletion

(AVL Trees) Data Structures and Programming Spring 2018 24 / 28



Deletion with Propagation

(AVL Trees) Data Structures and Programming Spring 2018 25 / 28



Propagated Single Rotation

(AVL Trees) Data Structures and Programming Spring 2018 26 / 28



Propagated Double Rotation

Imbalance may propagate upward so that many rotations may be
needed.

(AVL Trees) Data Structures and Programming Spring 2018 27 / 28



Pros and Cons of AVL Trees

Pros and Cons of AVL Trees
1 Search is O(log N) since AVL trees are always balanced.
2 Insertion and deletions are also O(log n)
3 The height balancing adds no more than a constant factor to the

speed of insertion.
Arguments against using AVL trees:

1 Difficult to program and debug; more space for balance factor.
2 Asymptotically faster but rebalancing costs time.
3 Most large searches are done in database systems on disk and use

other structures (e.g. B-trees).
4 May be OK to have O(N) for a single operation if total run time for

many consecutive operations is fast (e.g. Splay trees).

Can we guarantee O(log N) performance with less overhead?

(AVL Trees) Data Structures and Programming Spring 2018 28 / 28


	AVL Trees

