
Introduction to STL (Standard Template Library)

Rajanikanth Jammalamadaka

<rajani@ece.arizona.edu>

A template is defined as “something that establishes or serves as a pattern” Websters

In C++, a template has more or less the same meaning. A template is like a skeleton code
which becomes “alive” when it is instantiated with a type.

An algorithm is a well-ordered collection of unambiguous and effectively computable
operations that when executed produces a result and halts in a finite amount of time
[Schneider].

A class holding a collection of elements of some type is commonly called a container
class, or simply a container [Stroustrup].

A class is a user defined type which is very similar to the pre-defined types like int,
char, etc. So, the standard template library (STL) is a collection of generic algorithms
and containers which are orthogonal to each other. By the word orthogonal, we mean that
any algorithm can be used on any container and vice-versa.

In C++, there are various generic classes like vector, string, etc.

Since STL is a very large topic to be covered in an article or two, we will focus on the
most commonly used generic classes: vector and string. Before we discuss the
standard containers let us take a simple example to understand the word template.

// template.cpp

#include<iostream>
using std::cout;

template<typename T>
 // Declares T as a name of some type
/* It is also common to see template<class T>.
 The two mean the same */

/* The following template defines a function
 which takes two constant references of type
 T and returns the maximum value of type T.
 */

T Max(const T& a, const T& b) {
 return (a > b)? a : b;
}

mailto:rajani@ece.arizona.edu

int main() {
 cout << Max('i', 'r') << "\n";
 cout << Max(1, 3) << "\n";
}
// Output of template.cpp
r
3

In the above example, a function Max is defined which takes two constant references of
type T and returns the maximum value. But in the main function there are two function
calls, one is Max('i','r') and the other one is Max(1,3). We did not get any
compilation errors because we have used the template mechanism in this function. At
run-time, the compiler resolves what types are being passed to the Max function and
hence knows which output to return. It should be noted that the final compiled binary will
be larger as the compiler has to create a function for every type in the code passed to it.

Now, let us start with the example of the vector container.

A vector is very similar to an array but has more advanced features, some of which are
utilized in the example below.

#include<iostream>
#include<vector>

using namespace std;

int main() {
 /* I'll now create a vector of integers. It
 is instantiated here, so vint can hold
 integers */
 vector<int> vectorint;
 vectorint.reserve(5);

 /* reserve pre-allocates memory for holding
 five integers*/

 for(int j = 1; j < 6; j++)
 vectorint.push_back(j);

 typedef vector<int> Vector_Of_Ints;
 for(Vector_Of_Ints::const_iterator i
 = vint.begin();
 i != vint.end(); ++i)
 cout << *i << "\t";
 cout << endl;
}

It should be noted that the reserve function allocates memory but the allocation is more
akin to that of an array than using new. The capacity of a vector is defined as the
minimum number of objects that it can hold. The reserve method makes sure that the
vector has a capacity greater than or equal to its argument [Sutter]. In the above
example, after this statement

vectorint.reserve(5);

the vector vectorint has a capacity of at least 5.

The push_back() method function pushes the five integers into the vector. An iterator
behaves in the same way as a pointer but is more generic. Note that the iterator is made a
constant in this example because an iterator seldom modifies the contents of its vector.

In the above example, vectorint.begin() points to the first element of the vector,
which is 1. vectorint.end() points to an element which is after the last element of the
vector, which is 5 in this case. Therefore, we cannot dereference vectorint.end().
This is as shown below:

When we dereference the iterator using the * operator, we get the value stored at the
address to which the iterator points to.

When the above code is executed, gives the following output:

1 2 3 4 5

An even more convenient way of printing a vector would be to use the copy algorithm
as shown below:

copy(vint.begin(), vint.end(),
 ostream_iterator<int>(cout, " "));

which basically means: copy the contents of the vector starting from vint.begin() to
vint.end() -1 (remember that vint.end() points to an element after the last element
of the vector) to the standard output (cout) separating each of the numbers with four
space characters.

The header <algorithm> must be included for the copy algorithm to work.

Of course, the vector can be of any type, int, char or even another class such as
string, and they are all handled in the same way. This is possible because a vector is a
generic container, or in other words, a vector is a template class. For example after the
statement

vector<T> foo;

foo can hold objects of type T. Therefore, T can even be any class.

Consider a normal class foo. It will have a standard constructor, destructor, some
methods, and a couple of variables.

class foo {
public:
 foo();
 foo(int a, int b);
 foo(int a, double b);
 ~foo() {};
 int showValue() {
 return something;
 }
private:
 int something;
};

A template class can be thought of as being the same, except that now when we
instantiate it, we do so with an unspecified type T rather than an explicit int, char, etc.
Everything else remains the same (more or less).

template <typename A, typename B>
class foo {
public:
 foo();
 foo(A a, A b);
 foo(A a, B b);
 ~foo() {};
 A showValue() {
 return something;
 }
private:
 A something;
};

Next let us consider the string class. A string container is very similar to that of a
vector class. A string object can be declared as follows:

std::string sobject;

A string object can be initialized in some of the following ways (there are plenty of
other ways)

1. string sobject("hello");
2. string sobject = "hello";
3. string s1 = "Hello, ";
4. string sobject = s1;
5. string s2 = "World";
6. string sobject =s1 + s2;

In the first form of initialization the constructor of the string class is invoked with the
value of "hello" and therefore the sobject has the value of "hello" once this line is
executed.

In the second, third and fifth forms of initialisation, a string is assigned to the string
object and so the string objects will hold the respective strings after these statements are
executed.

In the fourth and fifth form of initialization, the copy constructor of the string class is
invoked in order to copy the contents of the strings at the right hand side to the string
objects.

Let us take another example which uses both the string and vector class to understand
how both of them work together.

// vecstringSimple.cpp

#include<iostream>
#include<string>
#include<vector>
#include<iterator>

using namespace std;

int main() {
 vector<string> vector_of_strings;
 vector_of_strings.reserve(5);
 string text;
 cout << "\n";
 cout << "Enter the strings\n";
 cout << "\n";
 for (int a = 0; a < 5; ++a) {
 cin >> text;
 vector_of_strings.push_back(text);
 }

 cout << "\n";
 cout << "Output of the program\n";
 cout << "\n";
 for(vector<string>::iterator i
 = vector_of_strings.end()-1;
 i >= vector_of_strings.begin();
 i--)
 cout << *i << "\n";
}

In the above example a vector of strings is created and strings are read into the
vector until the input is end. The strings are then output in the reverse order in which
they were entered, as shown below

Enter the strings:

Rajanikanth
Ravikanth
Srimannarayana
VijayaLakshmi
hello

Output of the program:

hello
VijayaLakshmi
Srimannarayana
Ravikanth
Rajanikanth

Let us take a more complex example which uses both the string and vector classes.

// vecstr.cpp

#include<iostream>
#include<vector>
#include<algorithm>
#include<iterator>
#include<string>

using namespace std;

int main() {
 vector<string> vector_of_strings;
 string s;

 cout << "Enter the strings to be sorted: "
 << "\n";

 while(getline(cin,s) && s != "end")
 vector_of_strings.push_back(s);

 sort(vector_of_strings.begin(),
 vector_of_strings.end());
 vector<string>::const_iterator pos
 = unique(vector_of_strings.begin(),
 vector_of_strings.end());
 vs.erase(pos, vector_of_strings.end());
 copy(vector_of_strings.begin(),
 vector_of_strings.end(),
 ostream_iterator<string>(cout,
 "\t"));
 cout << '\n';
}

Let us first understand how this code works and then we will look at how it runs.

First of all, the line

vector<string> vector_of_strings;

declares vector_of_strings as a vector of strings.

Next, the condition

while(getline(cin,s) && s != "end")

means read a line of input from stdin as a string until the input is end. So, "end" cannot
be an input string for this program. Next, the program pushes each of these strings into
the vector vector_of_strings.

The algorithm sorts the strings in the vector vector_of_strings in ascending order.
The unique algorithm moves all but the first string for each set of consecutive strings
to the end of the unique set of strings in the vector container. It returns an iterator
which points to the end of the unique set of strings; in our code this iterator is stored in
pos. Next, we call the erase iterator which actually deletes the duplicate elements from
pos to vector_of_strings.end().

The copy algorithm then copies the unique set of strings to the standard output.

Following is the output of the program vecstr.cpp

Enter the strings to be sorted:
Srimannarayana Jammalamadaka
VijayaLakshmi Jammalamadaka
Rajanikanth Jammalamadaka
Ravikanth Jammalamadaka
aaaaa
a
a
k
k
end

Rajanikanth Jammalamadak
Ravikanth Jammalamadaka
Srimannarayana Jammalamadaka
VijayaLakshmi Jammalamadaka
a
aaaaa
k

We will discuss a more complicated program using the vector and string containers in
the next article.

References
[Schneider] Schneider, M. and J. Gersting (1995), An Invitation to Computer Science,
West Publishing Company, New York, NY, p. 9.

[Stroustrup] Stroustrup, B., The C++ Programming Language (Special Edition), Addison
Wesley, p. 41.

[Sutter] Sutter, H., Exceptional C++ Style : 40 New Engineering Puzzles, Programming
Problems, and Solutions (C++ in Depth Series), Pearson Education; (July, 2004).

