
'

&

$

%
Course Booklet for

Advanced C Module

a1
...
an

 +

b1
...
bn

 =

a1 + b1

...
an + bn

Is it C or Logic?

Advanced tips, tricks & use cases for C users
By Emertxe

Version 3.0 (December 18, 2014)

All rights reserved. Copyright c© 2014
Emertxe Information Technologies Pvt Ltd

(http://www.emertxe.com)
Course Email: embedded.courses@emertxe.com

Emertxe Information Technologies Pvt Ltd. Copyright 2018

ii Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Contents

Preface v

0.1 Course: Education goals and objectives . v

1 Day 1: Introduction 1

1.1 Expectations out of this module . 1

1.2 What is a language? . 2

1.3 And the types of programming languages 3

1.4 Brief History . 4

1.4.1 The C Standard . 4

1.4.2 Important Characteristics . 4

1.4.3 What are the most important characteristics of the C language? . . 4

1.5 Keywords in C . 6

1.6 Lab Work . 11

2 Day 2: Basics Refresher 13

2.1 Numbers . 13

2.1.1 Integer storage on a computer: 2’s complement 13

2.1.2 Binary point numbers . 13

2.1.3 Floating point representation . 14

2.2 Basic Data Types & Variabes . 15

2.2.1 Sizes of all the basic data types in C 15

2.3 Type, Variable & Function Qualifiers . 15

2.3.1 What is a qualifier? . 15

2.3.2 The Qualifiers . 16

2.4 Statements . 17

2.4.1 Simple Statement & Statement Terminator 17

2.4.2 Compound Statement & its need . 17

2.5 Conditional Constructs . 18

2.5.1 Looping Techniques . 19

2.6 Declaration vs Definition . 20

2.7 Syntax and Semantics . 20

2.8 Operators . 21

2.9 Operator Types . 21

iii

Emertxe Information Technologies Pvt Ltd. Copyright 2018

iv Emertxe Information Technologies Pvt Ltd

2.10 Type promotion hierarchy . 22
2.11 Operation based Operators . 23

2.11.1 Arithmetic . 23
2.11.2 Logical . 23
2.11.3 Relational . 24
2.11.4 Assignment . 25
2.11.5 Bitwise . 25
2.11.6 Language . 26
2.11.7 Misc . 27
2.11.8 Pointers . 28

2.12 Precedence & Associativity of Operators . 29
2.13 Non Operating Operators . 29
2.14 Embedded Care with Operators . 29

2.14.1 Short Circuit Evaluation . 29
2.14.2 Operator Equivalence . 30
2.14.3 Underflows and Overflows . 30

2.15 Practice - 1 . 31
2.15.1 Prerequisite . 31
2.15.2 Objective . 31
2.15.3 Algorithm Design . 32
2.15.4 Dry Run . 33
2.15.5 Practical Implementation . 33

2.16 Practice - 2 . 33
2.16.1 Prerequisite . 33
2.16.2 Objective . 33
2.16.3 Algorithm Design . 34
2.16.4 Dry run . 35
2.16.5 Practical Implementation . 35

2.17 Quiz . 36
2.18 Lab Work . 38

3 Day 3: Functions 43
3.1 Why functions? . 43
3.2 Parameters, Arguments and Return Values 44

3.2.1 Function and the Stack . 45
3.3 Procedures vs Functions . 45
3.4 Various parameter passing mechanisms . 45

3.4.1 C’s only parameter passing mechanism: Pass-by-value 46
3.5 Ignoring Function’s Return Value . 47
3.6 Returning an array from a function . 49
3.7 main & its arguments . 50

3.7.1 3 ways of taking input . 50
3.8 Function Type . 51
3.9 Variable argument functions . 52

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd v

3.10 Practice - 1 . 53

3.10.1 Prerequisite . 53

3.10.2 Objective . 53

3.10.3 Algorithm Design . 54

3.10.4 Dry run . 55

3.10.5 Practical Implementation . 55

3.11 Practice - 2 . 56

3.11.1 Prerequisite . 56

3.11.2 Objective . 56

3.11.3 Algorithm Design . 57

3.11.4 Dry run . 58

3.11.5 Practical Implementation . 58

3.12 Quiz . 59

3.13 Lab Work . 59

4 Standard Input / Output 65

4.1 printf & scanf . 65

4.1.1 The first parameter, format string 65

4.1.2 Pointers with printf and scanf . 66

4.1.3 Return values . 66

4.1.4 Eating whitespaces by %d, %f, ... 66

4.2 % character conversion table . 67

4.3 Analyze the following loop . 68

4.4 Practice - 1 . 70

4.4.1 Prerequisite . 70

4.4.2 Objective . 70

4.4.3 Algorithm Design . 71

4.4.4 Dry run . 72

4.4.5 Practical Implementation . 72

4.5 Quiz . 73

4.6 Lab Work . 73

5 Day 4: Input / Output - Files 75

5.1 What is a file? . 75

5.2 Why files? . 75

5.3 The functions for file operations . 75

5.3.1 fgetc() . 76

5.3.2 Modes the file can be opened . 76

5.4 Practice - 1 . 78

5.4.1 Prerequisite . 78

5.4.2 Objective . 78

5.4.3 Algorithm Design . 79

5.4.4 Dry run . 80

5.4.5 Practical Implementation . 80

Emertxe Information Technologies Pvt Ltd. Copyright 2018

vi Emertxe Information Technologies Pvt Ltd

5.5 Quiz . 80

5.6 Lab Work . 81

6 Day - 5 & 6: Strings & Pointers 83

6.1 Strings . 83

6.2 Initializing a string . 83

6.3 Sizes of . 83

6.4 String Manipulations . 84

6.5 The program segments . 87

6.5.1 Shared Strings . 88

6.6 Why pointers? . 89

6.7 Pointers & the 7 rules . 89

6.7.1 Rule #1: Pointer as a integer variable 89

6.7.2 Rule #2: Referencing & Dereferencing 89

6.7.3 Rule #3: Type of a pointer . 90

6.7.4 Rule #4: Value of a Pointer . 90

6.7.5 Rule #5: NULL pointer . 90

6.7.6 Array Interpretations . 92

6.7.7 Rule #6: Arithmetic Operations with Pointers & Arrays 92

6.7.8 Rule #7: Static & Dynamic Allocation 93

6.8 Static vs Dynamical Allocation of 2-D arrays 96

6.8.1 Various equivalences in 2-D arrays 98

6.8.2 2-D arrays using a single level pointer 99

6.9 Function Pointers . 100

6.9.1 Why Function Pointers? . 100

6.9.2 Function Name - The Second Interpretation 100

6.9.3 Theory & Examples . 101

6.10 Practice - 1 . 103

6.10.1 Prerequisite . 103

6.10.2 Objective . 103

6.10.3 Algorithm Design . 104

6.10.4 Dry run . 105

6.10.5 Practical Implementation . 105

6.11 Practice - 2 . 106

6.11.1 Prerequisite . 106

6.11.2 Objective . 106

6.11.3 Algorithm Design . 107

6.11.4 Dry run . 109

6.11.5 Practical Implementation . 109

6.12 Quiz . 110

6.13 Lab Work . 111

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd vii

7 Day 7: Preprocessing 119
7.1 What is preprocessing & When is it done? 119
7.2 Built-in Defines . 120
7.3 The preprocessor directives . 120

7.3.1 #include . 120
7.3.2 #ifdef, #ifndef, #else, #endif . 121
7.3.3 #define, #undef . 121
7.3.4 #if, #else, #elif, #endif . 123
7.3.5 #error, #line . 124
7.3.6 #pragma . 124
7.3.7 #, ## . 124

7.4 Macro know-hows . 125
7.5 Practice - 1 . 126

7.5.1 Prerequisite . 126
7.5.2 Objective . 126
7.5.3 Algorithm Design . 127
7.5.4 Dry run . 128
7.5.5 Practical Implementation . 128

7.6 Quiz . 128
7.7 Lab Work . 129

8 Day 8: User Defined Types 131
8.1 Why structures & Why unions? . 131

8.1.1 User-Defined Types . 131
8.2 Various ways of defining a user-defined type 132
8.3 Unions . 133
8.4 Size of . 134

8.4.1 Why Padding? . 134
8.5 Initializing Structures . 135
8.6 Zero sized array . 135
8.7 Enumeration . 136
8.8 Bit fields . 137

8.8.1 Bit operations . 137
8.8.2 How with bit fields? . 137
8.8.3 Why bit fields? . 137
8.8.4 Ease vs Efficiency & Portability . 137
8.8.5 Size considerations . 137
8.8.6 Bit Padding . 138

8.9 Practice - 1 . 138
8.9.1 Prerequisite . 138
8.9.2 Objective . 138
8.9.3 Algorithm Design . 139
8.9.4 Dry run . 143
8.9.5 Practical Implementation . 143

Emertxe Information Technologies Pvt Ltd. Copyright 2018

viii Emertxe Information Technologies Pvt Ltd

8.10 Quiz . 143
8.11 Lab Work . 144

9 Day 9: Interview Preparation 145
9.1 Complicated Nested Definitions . 145

A Assignment Guidelines 147
A.1 Quality of the Source Code . 147

A.1.1 Variable Names . 147
A.1.2 Indentation and Format . 147
A.1.3 Internal Comments . 147
A.1.4 Modularity in Design . 147

A.2 Program Performance . 148
A.2.1 Correctness of Output . 148
A.2.2 Ease of Use . 148

B Grading of Programming Assignments 149

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Preface

0.1 Course: Education goals and objectives

Advanced C course module covers the depth of C language to its core, covering all the
functionalities of the language, more important from the industry perspective. By the end
of the module, students are expected to have made their concepts very clear and become
comfortable using the language to any level

The theory duration for this module roughly spans 3 weeks, apart from the parallel lab
sessions, and assignments

Pre-requisites for this module are: BE/BTech (4th semester onwards) and Basic pro-
gramming knowledge

This booklet serves as a workbook guide, as we go along through the Advanced C course
module at Emertxe Information Technologies Pvt Ltd. It will provide the enough informa-
tion pointers to remember, alongwith the references to detailed relevant materials. It will
provide a ground for practice and for writing your personalized notes

As part of this, it would cover: Mastering the basics, Playing with all kinds of Point-
ers, Var Args, Godly Recursion, Functions, Files, Preprocessor Directives, and many other
industry relevant topics. As an overall experience, it will take you through all the nitty-
gritties of C through a well organized set of examples and exercises

The appendix will contain references and details on the topics not directly related to
the module but nevertheless relevant to it. Examples include Dealing with the Compiler,
Creating your own library, and Building a Project

Finally, there is a complete appendix dedicated to a set of assignments well sorted and
graded, which gets reviewed after every batch

Special about this module (and this booklet):

• Concentrates on the in-depth concepts, making you more confident about you and
your skills

ix

Emertxe Information Technologies Pvt Ltd. Copyright 2018

x Emertxe Information Technologies Pvt Ltd

• Well packed and graded set of assignments and project for practice

• Focus on the way industry uses C, making you more confident at interviews and
getting a job

• Regular mutual feedbacks to improvise and tune the module as per the audience

• Regular updates from the industry to keep abreast with induustry

• Learn many more things, as added benefits than just the module, like:

– Get hands-on to work on Linux

– Become expert on various tools

– Increase your productivity

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 1

Day 1: Introduction

1.1 Expectations out of this module

Notes:

1

Emertxe Information Technologies Pvt Ltd. Copyright 2018

2 Emertxe Information Technologies Pvt Ltd

1.2 What is a language?

Simply put, a language is a stylized communication technique. The more varied vocabu-
lary it has, the more expressive it becomes. Then, there is grammar to make meaningful
communication statements out of it

Q: Which is your first language?
A:

Similarly, being more specific, a programming language is a stylized communication
technique intended to be used for controlling the behaviour of a machine (often a computer),
by expressing ourselves to the machine. Like the natural languages, programming languages
too, have syntactic rules (to form words) and semantic rules (to form sentences), used to
define meaning.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 3

1.3 And the types of programming languages

• Procedural: To be considered procedural, a programming language should support
procedural programming by having an explicit concept of a procedure, and a syntax
to define it. It should ideally support specification of argument types, local variables,
recursive procedure calls and use of procedures in separately built program constructs.
It may also support distinction of input and output arguments.
The canonical example of a procedural programming language is ALGOL. A language
in which the only form of procedure is a method is generally considered object-oriented
rather than procedural, and will not be included in this list. This applies to Java, but
not to C++.

• Object Oriented: Object-oriented programming may be seen as a collection of coop-
erating objects, as opposed to a traditional view in which a program may be seen as
a collection of functions, or simply as a list of instructions to the computer. In OOP,
each object is capable of receiving messages, processing data, and sending messages
to other objects. Each object can be viewed as an independent little machine with a
distinct role or responsibility.

• Functional: Functional programming languages are a class of languages designed to
reflect the way people think mathematically, rather than reflecting the underlying
machine. Functional languages are based on the lambda calculus, a simple model
of computation, and have a solid theoretical foundation that allows one to reason
formally about the programs written in them. The most commonly used functional
languages are Standard ML, Haskell, and ?pure? Scheme (a dia-lect of LISP), which,
although they differ in many ways, share most of the properties described here.

• Logical: The program specifies a computation by giving the properties of a correct
answer. Prolog and LDL are examples of declarative languages; since they empha-
size the logical properties of a computation, they are often called logic programming
languages. The declarative/procedural distinction is not rigid: Prolog of necessity
incorporates some procedural features, for example to manage file input/output, and
simple Boolean tests are common in FORTRAN and C. In the &‘&‘ideal&’&’ (I should
perhaps say &‘&‘ideal to logicians&’&’) case, writing a declarative program is equiv-
alent to defining a proof for a proposition (relationship).

• and many more

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

4 Emertxe Information Technologies Pvt Ltd

1.4 Brief History

Prior to C, most of the computer languages (such as Algol) were academic oriented, un-
realistic and were generally defined by committees. Since such languages were designed
having application domain in mind, they could not take the advantages of the underlying
hardware and if done, were not portable or efficient under other systems. It was thought
that a high-level language could never achieve the efficiency of assembly language. Portable,
efficient and easy to use language was a dream.

C came as such a programming language for writing compilers and operating systems.
It was a revolutionary language and shook the computer world with its might. With just
32 keywords, C established itself in a very wide base of applications. It has lineage starting
from CPL, (Combined Programming Language) a never implemented language. Martin
Richards implemented BCPL as a modified version of CPL. Ken Thompson further refined
BCPL to a language named as B. Later Dennis M. Ritchie added types to B and created a
language, what we have as C, for rewriting the UNIX operating system. Its popularity grew
along with the popularity of UNIX operating system that contributed a lot to its success.

1.4.1 The C Standard

’The C programming language’ book served as a primary reference for C programmers and
implementers alike for nearly a decade. However it didn’t define C perfectly and there were
many ambiguous parts in the language. As far as the library was concerned, only the C
implementation in UNIX was close to the ’standard’. So many dialects existed for C and
it was the time the language has to be standardized and it was done in 1989 with ANSI
C standard. Nearly after a decade another standard, C9X, for C is available that provides
many significant improvements over the previous 1989 ANSI C standard.

1.4.2 Important Characteristics

C is considered as a middle level language, because it possesses the qualities of both high
level and low-level languages. For example, it has most of the control structures present
in a higher-level language; it also has macro processor, pointers, strings as just character
arrays, direct memory manipulation, ability to access hardware, weakly typed nature - such
facilities resemble the assembly (low-level) language constructs.

1.4.3 What are the most important characteristics of the C language?

• C can be considered as a pragmatic language: it is language for programmers, intended
to be used commercially and are designed in a way to address real problems involved
with writing code. This is as opposed to academic or research languages where proper
design is given credit without much consideration to pragmatic details.

• It is indented to be used by advanced programmers, for serious use, and not for novices
and thus qualify less as an academic language for learning.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 5

• Gives importance to curt code. For example, an integer is just an int, { and } for
begin and end etc. Look at the following C code for string copy and recursive code
for string reverse:

char *strcpy(char *t, char *s)

{

while(*t++ = *s++)

;

}

char *strrev(char *s)

{

return !*s ? s : strcpy(s, strncat(strrev(s+1), s,1));

}

It should also be noted that due to this same property, C became infamous of being a
write-only language.

• It is widely available in various platforms from mainframes to palmtops and is known
for its wide availability.

• It is a general-purpose language, even though it is applied and used effectively in
various specific domains.

• It is a free-formatted language (and not a strongly-typed language).

• Efficiency and portability are the important considerations that influenced many ma-
jor design decisions in this language. For example, for efficiency considerations, storage
and evaluation of integral types as integers is done.

• Library facilities play an important role - the standard library provides the often-
required facilities, for example, string manipulation, mathematical functions, I/O
routines.

It is often claimed that one of C’s major virtues is it is so small that every programmer
understands every construct in the language.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

6 Emertxe Information Technologies Pvt Ltd

1.5 Keywords in C

The keywords used here is as in ANSI C 1989 standard.

auto

This keyword is derived from the B language, where it is used to state that a variable
is an automatic variable, i.e. the lifetime is automatically entered and destroyed as the
method frame is created and destroyed. Since there are no types in B, this keyword was
mandatory and used extensively. The keyword was adapted in C to explicitly say that a
variable is automatic.

break

break is used to terminate the innermost looping statement or a switch statement.

case

Used in switch statements for selecting a particular case. The case should be followed
by a constant integral expression.

char

The basic data type supported for storing characters of one byte size.

const

It specifies the value of a field or a local variable that cannot be modified.

continue

This is used to skip the rest of the statements in a looping statement.

default

This label is used in switch statements. The statements after this label will be executed
only when there is no match found in the case labels.

do

An exit-controlled (the looping condition is checked at the end of the loop) looping
mechanism.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 7

double

Variable of this type can store double-precision floating point numbers. The imple-
mentations may follow IEEE formats to represent floats and doubles, and double occupies
8-bytes in memory. In this IEEE format, in addition to the non-zero values, floating point
numbers can also store:

• zero (either positive or negative zero),

• ∞ (both positive and negative),

• NaN (Not-A-Number) - in case of invalid floating point operations.

else

Used with if statements. Else part is executed when the condition in if becomes false.

enum

In C, an enumeration is a set of named constants that are internally represented as
integers. They can take part in expressions as if they were of integral type. The use of
enums is preferable to the use of consts or #defines for representing related set of values
because the use of enums makes the code more readable and self-documenting.

extern

This indicates that a name is external to the compiler and the current translation unit.

float

float is for single precision floating point numbers. ANSI C does not specify any rep-
resentation standard for these types. Still it provides a model whose characteristics are
guaranteed to be present in any implementation. The standard header file ¡float.h¿ defines
macros that provide information about the implementation of floating point arithmetic.
With IEEE standard for floating point single precision numbers, a float type occupies 4-
bytes.

for

An elegant looping statement.

goto

Used in unconditional jumps within a function (local goto).

Emertxe Information Technologies Pvt Ltd. Copyright 2018

8 Emertxe Information Technologies Pvt Ltd

if

Simple conditional branching statement. In C, any non-zero value is treated as a true
value and will lead to execution of this statement.

int

int is to represent integers, a simple and efficient type for arithmetic operations. In C,
the size of an integer is usually the word size of the processor, although the compiler is free
to choose the size. However, ANSI C does not permit an integer, which is less than 16 bits.

long

short, long and int are provided to represent various sizes of possible integral types
supported by the hardware. ANSI C says that the size of these types is implementation
defined, but ensures that the non-decreasing order of char, short, int, and long is preserved
(non-decreasing order means that the sizes are char ≤ short ≤ int ≤ long and not the other
way).

register

You can specify a local variable as register if you think that variable may be accessed
frequently. The compiler will try to put that variable in a microprocessor register if one
is available; otherwise, this keyword is ignored and treated as if the variable were declared
as auto. Declaring such frequently used variables to be placed in registers may gain only
a small performance improvement, for example register optimizations. Programmers are
usually in a better position than the compiler is to guess which variable will be used very
frequently and thus can assign register storage to such variables. Modern compilers will
easily find out the variables that will be frequently accessed and will place them accord-
ingly. So, this keyword is not supported in later C based languages like Java and C#

return

To return control back from the called method.

short

See long and int.

signed

In C, both unsigned and signed are supported for integral types. The idea of separating
unsigned from signed types started with the requirement of having a larger range of positive
values within the same available space. This idea is valuable in programming where low-

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 9

level hardware access is required and in system programming. signed and unsigned data
types are implemented in the same way. The only difference is that the interpretation of the
Most Significant Bit (MSB) varies. There are many nasty problems that are encountered in
C due to misuse of unsigned values. The sign or value of a type may be preserved when an
unsigned type is promoted to an integer; these are referred to as sign and value preserving
respectively. The choice is an implementation detail and also a source of bugs in C.

sizeof

The sizeof operator is used to obtain the size of a type or an object. It is important
in writing portable code in C, since the size of a data type may differ depending on the
implementation.

static

In C, the static keyword has an overloaded meaning and used in two different contexts:
When used before global functions, it limits the function’s scope to the current file When
used inside a function, it indicates that the variable is of local scope but of static lifetime
(meaning that the value remains between function calls).

struct

struct keyword provides support for aggregate types.

switch

You can look at the switch statement as a specialized version of an if-else cascade, but
with limitations. You can do only equality checks and only integral type constants. Using
switch instead of an if-else cascade helps in simplifying control-flow and gives you the ad-
vantage of generating much faster code. In C, case statements fall through to the next case
statement when an explicit break statement is missing (which is a source of many bugs in
C programs).

typedef

Typedefs do not create new types - they just add new type names. In C, they are
helpful in managing complex declarations. They are also useful in abstracting the details
from the users and thus help in increasing the portability of the code. It should be noted
that typedefs obey scoping rules and are not textual replacements (as opposed to #defines).

union

Unions can be considered a special case of structures; the syntax for both is mostly the
same and only the semantics differ. Memory is allocated such that it can accommodate the

Emertxe Information Technologies Pvt Ltd. Copyright 2018

10 Emertxe Information Technologies Pvt Ltd

biggest member. Unions suffer many disadvantages in practice, for example, there is no
in-built mechanism to know which union member is currently used to store the value.

unsigned

See signed

void

void specifies a non-existent or empty set of values. It is used in the case of void pointers
as a generic pointer type in C, and as return type of a function to specify that the function
returns nothing. You cannot have objects of type void, and hence this type is sometimes
called a pseudo-type.

volatile

In C, volatile tells the compiler not to do any optimizations on the variable qualified
as volatile. This also indicates that the variable is asynchronous, and system or external
sources may change its value. For example, suppose that you are reading from the serial
port. The data may arrive and thus the field that contains the data may be modified ex-
ternally without the programmers intervention. In such cases, its essential that the field be
declared as volatile.

while

This provides the entry-controlled looping mechanism.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 11

1.6 Lab Work

Complete the assignments

(Id) / Date Assignment Topic

() WAP to check whether a given number is odd or even and its signed-
ness(Use nested if) eg: If input is -1, it should print -1 is negative
odd number.

()

()

()

()

()

()

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

12 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 2

Day 2: Basics Refresher

2.1 Numbers

2.1.1 Integer storage on a computer: 2’s complement

• Just invert each bit of its positive’s binary value and add 1

• Mathematically: −k ≡ 2n − k

Notes:

2.1.2 Binary point numbers

• 0.510 = 0.12 = 1 ∗ 2−1

• 410 = 1002 = 1 ∗ 22

• 510 = 1012 = 1 ∗ 22 + 1 ∗ 20

• 2.2510 = 10.012 = 1 ∗ 22 + 1 ∗ 2−2

13

Emertxe Information Technologies Pvt Ltd. Copyright 2018

14 Emertxe Information Technologies Pvt Ltd

2.1.3 Floating point representation

The IEEE single precision floating point standard representation requires a 32-bit word,
which may be represented as numbered from 0 to 31, left to right. The first bit is the sign
bit, ’S’, the next 8 bits, are the exponent bits, ’E’, and the final 23 bits are the fraction ’F’

The value V represented by the word may be determined as follows:

• If E=255 and F is nonzero, then V=NaN

• If E=255 and F is zero and S=1, then V=-Infinity

• If E=255 and F is zero and S=0, then V=+Infinity

• If 0<E<255, then V=(−1)S ∗ 2(E−127) ∗ (1.F)

• If E=0 and F is nonzero, then V=(−1)S ∗ 2(−126) ∗ (0.F)

• If E=0 and F is zero and S=1, then V=-0

• If E=0 and F is zero and S=0, then V=0

The IEEE double precision floating point standard representation requires a 64-bit word,
which may be represented as numbered from 0 to 63, left to right. The first bit is the sign
bit, ’S’, the next 11 bits, are the exponent bits, ’E’, and the final 52 bits are the fraction ’F’

The value V represented by the word may be determined as follows:

• If E=2047 and F is nonzero, then V=NaN

• If E=2047 and F is zero and S=1, then V=-Infinity

• If E=2047 and F is zero and S=0, then V=+Infinity

• If 0<E<2047, then V=(−1)S ∗ 2(E−1023) ∗ (1.F)

• If E=0 and F is nonzero, then V=(−1)S ∗ 2(−1022) ∗ (0.F)

• If E=0 and F is zero and S=1, then V=-0

• If E=0 and F is zero and S=0, then V=0

S: 1 E: 8(f), 11(d) F: 23(f), 52(d)

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 15

2.2 Basic Data Types & Variabes

2.2.1 Sizes of all the basic data types in C

• 1 byte = char <= short <= int <= long <= long long

• float = 4 bytes

• double = 8 bytes

• pointer = address word, mostly same as word

• void = 1 byte

Notes:

2.3 Type, Variable & Function Qualifiers

2.3.1 What is a qualifier?

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

16 Emertxe Information Technologies Pvt Ltd

2.3.2 The Qualifiers

• signed(T)

• unsigned(T)

Notes:
Default for char is compiler dependent. For all others, it is signed

• short(T)

• long(T)

• long long(T)

Notes:

• const(V)

• volatile(V)

Notes:
const means ”Read only”. Need not be constant.
volatile means ”Recomputed for every access”.

• static(V|F)

• extern(V|F)

• auto(V)

Notes:
Default for globals is extern. For local variables, it is auto.

• register(V)

Notes:
Request for a CPU register

• inline(F)

Notes:
Request for function call replacement by code

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 17

2.4 Statements

2.4.1 Simple Statement & Statement Terminator

Is this code valid?

main()

{

3;+5;

;

}

Notes:
; is a valid statement as it is a part of the statement, and not just a statement terminator
as in Pascal.

2.4.2 Compound Statement & its need

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

18 Emertxe Information Technologies Pvt Ltd

2.5 Conditional Constructs

The Conditions for loops and if/else blocks must evaluate to a boolean value, i.e. true or
false.
In C, there is no seperate datatype for booleans. Instead anything with a value of zero (e.g.
int i = 0)evaluates to false, and any other evaluates to true.

• Single Step

– if (<cond>) <stmt> [else <stmt>]

– switch (<expr>) case <val1>: <stmt(s)> ... default: <stmts>

if (condition)

{

// if condition is true

}

else

{

// if condition is false

}

Notes:

• Repetitive

– for (<initialize>; <cond>; <post processor>;) <stmt>

– while (<cond>) <stmt>

– do <stmt> while (<cond>);

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 19

2.5.1 Looping Techniques

repeat 10 times for (i = 0; i < 10; i++) i = 0

{ while (i < 10)

//code {

} //code

}

repeat till a condition for (;condition;) while (condition)

{ {

//code //code

} }

repeat forever for (; 1;) while (1)

{ {

//code //code

} }

for

int main()

{

int x;

for (x = 0; x < 10; x++)

{

printf("%d\n", x);

}

}

x is set to zero, while x is less than 10 it calls printf to display the value of the variable
x, and it adds 1 to x until the condition is met. Keep in mind also that the variable is
incremented after the code in the loop is run for the first time.

while

int main()

{

int x = 0; /* Dont forget to declare variables */

while (x < 10) /* while x is less than 10 */

{

printf("%d\n", x);

x++; /* Update x so the condition can be met eventually */

Emertxe Information Technologies Pvt Ltd. Copyright 2018

20 Emertxe Information Technologies Pvt Ltd

}

}

do while

DO..WHILE loops are useful for things that want to loop at least once.

#include <stdio.h>

int main()

{

int x;

x = 0;

do

{

/* "Hello, world!" is printed at least one time

even though the condition is false */

printf("Hello, world!\n");

} while (x != 0);

}

Keep in mind that you must include a trailing semi-colon after the while in the above ex-
ample.

2.6 Declaration vs Definition

Notes: Declaration is an announcement and can be done 1 or more times Definition is an
actual execution and should be done exactly once

2.7 Syntax and Semantics

Notes: Syntax is the Punctuation and Spellings of a Language Semantics is the Vocabulary
and Grammar of the Language

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 21

2.8 Operators

All C operators do 2 things:

• Operates on its Operands

• Returns a value

Notes:

2.9 Operator Types

Based on:

• Number of operands

– Unary

– Binary

– Ternary

• Operation

– Arithmetic

– Logical

– Relational

– Assignment

– Bitwise

– Language

– Pointers

– Miscellaneous

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

22 Emertxe Information Technologies Pvt Ltd

2.10 Type promotion hierarchy

long long double
l

long double
l

double
l

float
l

unsigned long long
l

(signed) long long
l

unsigned long
l

(signed) long
l

unsigned int
l

(signed) int
l

unsigned short
l

(signed) short
l

unsigned char
l

signed char

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 23

2.11 Operation based Operators

Let’s stride through examples:

2.11.1 Arithmetic

int main()

{

int i = 0, j = 0;

printf("%d\n", i++ + ++j);

return 0;

}

Notes:
Direction of expression evaluation vs Associativity

2.11.2 Logical

int main()

{

int a = 1, b = 0;

if (++a || ++b)

printf("In first if a = %d, b = %d", a, b);

a = 1, b = 0;

if (b++ && ++a)

printf("In second if a = %d, b = %d", a, b);

else

printf("In second if a = %d, b = %d", a, b);

return 0;

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

24 Emertxe Information Technologies Pvt Ltd

DeMorgan’s Law trick

int main()

{

int a, b = 0, c;

if ((!(a < b) && !(b < c)) == (!((a < b) || (b < c))))

printf("Hey it works");

else

printf("No! it did’nt!!!");

}

Notes:

2.11.3 Relational

int main()

{

float f = 0.7;

if(f == 0.7)

printf("Equal");

else

printf("Not Equal");

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 25

2.11.4 Assignment

int main()

{

int a = 1, c = 1, e = 1;

float b = 1.5, d = 1.5, f = 1.5;

a += b += c += d += e += f;

}

Notes:

int main()

{

int x = 0;

if (x = 5)

printf("Its equal");

else

printf("No! it’s not!!!");

}

Notes:

2.11.5 Bitwise

int bitcount(unsigned char x)

{

int count;

for (count = 0; x != 0; x >>= 1);

if (x & 01)

count++;

return count;

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

26 Emertxe Information Technologies Pvt Ltd

2.11.6 Language

sizeof

Try this:

int main()

{

int x = 5;

printf("%u:%u:%u\n", sizeof(int), sizeof x, sizeof 5);

}

Notes:
3 reasons for why sizeof is not a function: 1) Any type of operands, 2) Type as an operand,
3) No brackets needed across operands

int main()

{

int i = 0;

int j = sizeof(++i);

printf("%d:%d\n", i, j);

/* Assume sizeof int is 4 bytes */

}

Notes:
The only C operators, which operate during compilation itself, i.e. a compile-time operator

int main()

{

int i;

int array[5] = {0, 2, 4, 1, 3};

for(i = -1; i < sizeof(array) / sizeof(int) - 1; i++)

printf("%x\n", array[i + 1]);

}

Notes:

(type)

This operator is the complete follower of the type promotion table Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 27

2.11.7 Misc

Ternary Operator

What will the following expression evaluate to?
1 ? 5 : 4 ? 3 : 6
Notes:

Comma Operator

int main()

{

int i = 0, j = 0;

j = i++ ? i++ : ++i;

j = i++ ? i++, ++j : ++j, i++;

}

Notes:

[] - Commutative like +

Notes:

int main()

{

char a[] = "Hello World";

int i;

for (i = 0; i < sizeof(a) - 1; i++)

printf("%c", i[a]);

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

28 Emertxe Information Technologies Pvt Ltd

Arrays

• Array Indexing
Array index starts from zero. This idea is exploited in case of strings and arrays by
having close relation with pointers in C. Technically, it is necessary for arrays to start
with index 0 as the array name can be treated as the base address (a pointer). The
following demonstrates the array-pointer equality:

int arr[10];

int firstElement = *(arr);

/* *(arr) is equivalent to *(arr+0) */

int fifthElement = *(arr+5)

/* had the index started from 1, this expression will access the */

/* sixth element and not the fifth element*/

• Array out of bounds

• Multi-dimension(Array of arrays)

typedef int IntArray30[30];

IntArray30 a;

Notes:

()

Is sizeof((x, y)) syntactically correct?
Notes:

. - Is it Commutative ?

Notes: We’ll discuss on these during user-defined types discussion

2.11.8 Pointers

&, *, ->
Notes:
We’ll discuss on these during pointers discussion

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 29

2.12 Precedence & Associativity of Operators

Operators Associativity

() [] -> . left to right
! ∼ ++ −− + - * & (type) sizeof right to left
/ % * left to right
+ - left to right
<< >> left to right
< <= > >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= += -= *= /= %= &= ^= |= <<= >>= right to left
, left to right

Unary +, -, and * have higher precedence than the binary forms
Notes:

2.13 Non Operating Operators

Notes: Operator symbols used as not operators, e.g int a = 5; f(a, 3);

2.14 Embedded Care with Operators

2.14.1 Short Circuit Evaluation

There exists a short circuit evaluation for the logical operators && and ||. C introduced
this tradition and is followed by the other three languages. The expression is evaluated only
so long as to determine the truth-value of the expression (also referred to as truth-value
context)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

30 Emertxe Information Technologies Pvt Ltd

2.14.2 Operator Equivalence

The use of bitwise and logical operators seems to be equivalent in many cases. For example:

int main()

{

int i = 1, j = 0;

if ((i & j) == (i && j))

{

printf("Both seems be equivalent\n");

printf("i = %d, j = %d", i, j);

}

}

The difference lies in shortcut evaluation. See this:

int main()

{

int i = 1, j = 0;

if (i || (j = 1))

{

printf("But appearances can be deceptive \n");

printf("i = %d, j = %d", i, j);

}

}

Had you used a bit-wise operator, the whole expression would be evaluated with j set
to one. Due to the short circuit evaluation, we get different answers.

2.14.3 Underflows and Overflows

In integral expressions, if the results cross the limits (say INT MIN or INT MAX), underflow
or overflow occurs, as the case may be and the value rotates back according to the 2’s
complement representation of integers

In case of floating point numbers, it may lead to floating point exceptions (say SIGFPE).
Now-a-days, most of the implementations provide support to IEEE 754 floating-point stan-
dard that supports the use of -INF, +INF (INF stands for infinity), and NaN. So, when an
overflow occurs, it goes to either infinity or NaN, as the case may be
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 31

2.15 Practice - 1

Read n and check prime number or not.

2.15.1 Prerequisite

1. Looping Concepts

2. Arithmetical Operators

2.15.2 Objective

1. Understanding if else conditions

2. Understanding concept of continous looping

Emertxe Information Technologies Pvt Ltd. Copyright 2018

32 Emertxe Information Technologies Pvt Ltd

2.15.3 Algorithm Design

Read num

num < 2

i = 2

num==2
|| num==3

number
not prime

number
is prime

i<=
sqrt(num)

number
is prime

num%i
==0

number is
not prime

yes

no

no

yes

yes

yes

no

i++

Coding:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 33

2.15.4 Dry Run

2.15.5 Practical Implementation

1. Encryption

2. Psuedo random Generator

3. Computer hash tables

2.16 Practice - 2

Read n and print the greatest fibonacci no ≤ n

2.16.1 Prerequisite

1. Looping Concepts

2. Arithmetical Operators

2.16.2 Objective

1. Understanding if else condition

2. Understanding continous looping

Emertxe Information Technologies Pvt Ltd. Copyright 2018

34 Emertxe Information Technologies Pvt Ltd

2.16.3 Algorithm Design

limit<0

first=0
sec=1

sum=
first+sec

first=sec
sec=sum

sum=
first+sec

sum<
limit

limit==0
|| limit==1

exit

fibonacci
number is 0

sec is largest
fibonacci

no

yes

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 35

2.16.4 Dry run

2.16.5 Practical Implementation

1. Fibonacci numbers are used by some pseudorandom number generators.

2. Fibonacci numbers are used in a polyphase version of the merge sort algorithm.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

36 Emertxe Information Technologies Pvt Ltd

2.17 Quiz

1. (1 point) What is the output of the following code ?

int func()

{

const int initial = 1;

static int count = initial;

return ++count;

}

2. (1 point) How many distinct values can you represent with a sequence of

3 bits?

3. (1 point) How many bits does a single hexadecimal digit(eg F) usually

represent?

4. (1 point) sizeof(int [0])

5. (1 point) What is the output of the following code?

int main()

{

char ch1 = 5, ch2 = 250;

printf("%u, %u, %u\n", 5 - 250, (char)5 - (char)250, ch1 - ch2);

}

6. What is the return type of sizeof.

7. Explain the difference between compile time and run time operators with examples.

8. What is type promotion.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 37

Emertxe Information Technologies Pvt Ltd. Copyright 2018

38 Emertxe Information Technologies Pvt Ltd

2.18 Lab Work

Run all the related templates and understand them.Complete all the assignments in 3days
(Id) / Date Assignment Topic

() Read n and Print the greatest fibonacci no ≤ n
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read n and check for its perfectness
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Print all ASCII characters
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 39

(Id) / Date Assignment Topic

() Try out examples relating mod and div with with negative numbers
on your own

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Print sizes of all basic data types of C
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Sieve of Eratosthenes
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

40 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Read 3 nos a, r, n. Generate AP, GP, HP
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Print Hello world in X formation
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() List 5 different compiler dependent independent expressions
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 41

(Id) / Date Assignment Topic

() Read n and generate fibonacci nos. ≤ n
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read n and n nos. of ints and print the median of those
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Given a number between 1 to 365 (incl), find which day is it
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

42 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Verify type promotion table using sizeof
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Write a bitwise program to check a number is even or odd
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Print bits of signed & unsigned types and check for 2’s
complement
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 3

Day 3: Functions

3.1 Why functions?

A C function prototype just specifies the interface and hence it can be separated from the
actual implementation. This helps us in having inter-dependant translation units arranged
in separate files. The actual implementation can be in a file and only the prototype can be
used in the current file for using it. It is tedious to find out the prototypes of the functions
used and provide it in every file where the function is used. Further, when the function’s
prototype is modified, the change has to be reflected to all the files that uses it. The header
files avoid this problem and they generally contain the declarations of functions and other
types. The #include directive takes the responsibility of replacing the header files in the
source files.

Notes:

43

Emertxe Information Technologies Pvt Ltd. Copyright 2018

44 Emertxe Information Technologies Pvt Ltd

3.2 Parameters, Arguments and Return Values

Parameters are also commonly referred to as arguments, though arguments are more prop-
erly thought of as the actual values or references assigned to the parameter variables when
the subroutine is called at runtime. When discussing code that is calling into a subroutine,
any values or references passed into the subroutine are the arguments, and the place in the
code where these values or references are given is the parameter list. When discussing the
code inside the subroutine definition, the variables in the subroutine’s parameter list are
the parameters, while the values of the parameters at runtime are the arguments.

Many programmers use parameter and argument interchangeably, depending on context
to distinguish the meaning. In practice, distinguishing between the two terms is usually
unnecessary in order to use them correctly or communicate their use to other programmers

int add(int a, int b); /*declaration*/

int main()

{

int i, j, sum;

sum = add(i, j); /*function call*/

printf("\nSum of %d and %d is %d\n", i, j, sum);

return 0;

}

int add(int a, int b) /*definition*/

{

int val_to_return;

val_to_return = a + b;

return val_to_return;

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 45

3.2.1 Function and the Stack

Parameters

Local Variables

Return Address

Top of the StackStack Pointer

Frame Pointer

S
ta

ck
 F

ra
m

e

Notes:

3.3 Procedures vs Functions

Notes: Procedure is a function which returns nothing, i.e. void

3.4 Various parameter passing mechanisms

• Call by value

• Call by reference / address / location / variable /

• Copy-restore / Copy-in copy-out / Value-result

• Call by name

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

46 Emertxe Information Technologies Pvt Ltd

3.4.1 C’s only parameter passing mechanism: Pass-by-value

C supports only one argument passing mechanism: pass-by-value. When the pointers are
copied passed by value, it looks similar to pass-by-address or pass-by-reference, but it is
only pass-by-value only. Macros in C are the way that looks like pass-by-name, but it is
error-prone (see the chapter ”Preprocessor” for more details).

As opposed to the functions where we pass the value as arguments, in macros, we pass
the names to the arguments. For example:

#define arrSize(array) (sizeof(array) / sizeof(array[0]))

void foo()

{

int iArr[10];

char cArr[5][15];

printf("Size of iArr = %d\n", arrSize(iArr));

printf("Size of iArr = %d\n", arrSize(cArr));

}

Remember, you cannot obtain this functionality with the other type of argument passing
mechanisms. However, this mechanism will never check for types and is error-prone.

Coming to pass-by-value, in functions, we can pass the value of the variable alone and
a copy is saved in the calling function. This leaves the original variable unaffected by the
changes inside the function. This fact is exploited much in the recursive functions:

int is_even(int num)

{

if (num & 1)

return 0;

else

return 1;

}

int main()

{

ret = iseven(14);

ret ? printf("%d is even\n", ret): printf("%d is odd\n", ret);

return 0;

}

Passing Pointers: Consider an example, where we have to apply a filter to a JPEG image.
We can do it by passing the original image as an argument and the filtered image would be
the return value:

JPEGImage apply_filter(JPEGImage image)

{

/* apply filter */

return image;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 47

This apply filter function has several disadvantages. When we have a local variable, we
allocate space in the function stack and to initialize/destroy the whole object. This is
inefficient in terms of space and time. Consider the situation where the JPEGImage would
take 50 KB of memory and initializing it would take 0.5 seconds. This could be right
scenario where we can make use of pass-by-address.

In pass-by-address, the calling function passes the address of the argument and the
called function makes uses of the address to manipulate it. The same function could be
written as:

void apply_filter(JPEGImage *image)

{

/* apply filter */

}

So, only the address is copied into the stack. This is very advantageous and efficient in
places where the object is very to copy the object.

DIU: Which kind of parameter passing method is mentioned below ?

void twotimes(int x)

{

printf ("\nFUN:Argument before change took place %d",x);

x *= 2;

printf ("\nFUN:Argument after tempering with it %d",x);

}

int main(void)

{

int number=10;

printf ("\nMain:Number before function-call %d",number);

twotimes(number);

printf("\nMain:Number after function-call is %d",number);

}

3.5 Ignoring Function’s Return Value

In C tradition, you can choose to ignore to capture the return value from a method:

int i = get_an_integer();

/*

* fetch the integer in i

* or

*/

get_an_integer();

/* ignore the return value */

Emertxe Information Technologies Pvt Ltd. Copyright 2018

48 Emertxe Information Technologies Pvt Ltd

You may think that, the programmer could have forgotten to fetch the value and it would
be very helpful if the compiler warns him or produces the error telling to capture the return
value. However, this can be very helpful in many cases when you need to call the method
only for its behavior and not for the result it may return back. So it is convenient for the
programmers that they need not fetch the value (sometimes by creating a local variable just
to fetch it) and ignore it later. For example, many C programmers have used the printf
function in C without knowing that it returns the number of characters printed; or the scanf
function that returns the number of items successfully scanned.
Notes:

DIU: Pass an integer array to a function and display the contents in the array.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 49

3.6 Returning an array from a function

Explain the different errors and bugs in the following codes.

int n, arr[10], *top;

int *top2(int n, int array[])

{

int biggest, second_biggest;

int big2[2];

/* Do calculation here */

big2[0] = biggest;

big2[1] = second_biggest;

return big2;

}

int main()

{

/* Read n & n elements in arr */

top = top2(n, arr);

printf("%d:%d\n", top[0], top[1]);

return 0;

}

Notes:

int main()

{

printf("%s\n", fun());

return 0;

}

void fun()

{

char buff[] = "Hello World";

return buff;

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

50 Emertxe Information Technologies Pvt Ltd

3.7 main & its arguments

Notes: In C, main is considered special and is much different from other user-defined func-
tions. The parameters with which main can be declared are restricted. The first argument
has the number of arguments (conventionally called as argc), second holds the string arrays
having actual arguments (argv) and third one is the optional parameter which holds the
string array (the array has a null terminated string at the end) that has list of environment
variables (argp). The main() function is considered to be declared implicitly by the com-
piler, but defined by the user. The parameters to main() are passed from command line
instead of through a function call. main() also considered to do implicit return of 0 if no
explicit return is provided. Though the compiler might allow the user to define the return
type of main as void or other types, the main is treated as having return type int.

The prototype for the main() is

int main(void);

int main(int argc, char *argv[]);

int main(int argc, char *argv[], char *envp[]);

• argc - no. of command line arguments passed to the main from the shell prompt.

• argv - is an array of pointers to the list of arguments(all are charecter strings)

• envp - is an array of pointer to the environment variable

#include <stdio.h>

int main(int argc, char *argv[], char *envp[])

{

int i;

char **env = envp;

printf("\n The count is %d:", argc);

for (i = 0; i < argc; i++)

printf("%s \n", argv[i]);

while (*env)

printf("%s \n", *env++);

return 0;

}

./a.out April 17 2012

3.7.1 3 ways of taking input

• Through user interface

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 51

• Through command line arguments

• Through environment variables

3.8 Function Type

The functions can be considered to be a type in C: you can apply operators *, & to functions
as if they are variables, and function definitions reserve a space (in code area of the program),
function calls can participate in expressions as if they are variables and in that case, the
type of the function is its return type.
/* function definition*/
int foo() { return 0; }
/* the function pointer can hold the function*/
int (*fp)() = foo;

/* using & for function is optional to take the address of the function*/
fp = &foo;

/*the value of i is 0; the type of the expression 10 * foo() is int*/
int i = 10 * fp();

Notes:
typedef int F(void);

Emertxe Information Technologies Pvt Ltd. Copyright 2018

52 Emertxe Information Technologies Pvt Ltd

3.9 Variable argument functions

• The header: #include <stdarg.h>

• The type: va list ap;

• The macros: va start(ap, last) va arg(ap, type) va end(ap)

Example:

double calc_mean(int num, ...)

{

va_list ap;

double val;

int i;

va_start(ap, num);

val = 0;

for (i = 0; i < num; i++)

{

val += va_arg(ap, double);

}

va_end(ap);

return (val / num);

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 53

3.10 Practice - 1

Write a function (my ispunct) to check whether a character is punctuation or not. It
should check whether the character is ’any printable character which is NOT a space or an
alphanumeric character’

3.10.1 Prerequisite

1. Function Concepts

2. getchar usage

3. ascii table

4. logical operators

3.10.2 Objective

1. Implementing and understanding user defined functions.

2. Understanding modular approach of programming.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

54 Emertxe Information Technologies Pvt Ltd

3.10.3 Algorithm Design

read ch

ret=
my_ispunct(ch)

return 0

ch is
punctuation

ch is not
punctuation

my_ispunct
function

exit

yes

yes

yes

no

no

yes

yes

no

no

return 1

ch !=
alphabet

or number

ch !=
 space

ch ==
printable

ch !=
 EOF

noret !=
0

Coding:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 55

3.10.4 Dry run

3.10.5 Practical Implementation

1. C standard function.

2. Used for parsing the strings.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

56 Emertxe Information Technologies Pvt Ltd

3.11 Practice - 2

Write a function for Swapping two integers by using pass by reference method.

3.11.1 Prerequisite

1. Function Concepts

2. Pass by reference method

3.11.2 Objective

1. Implementing and understanding user defined functions.

2. Implementing and understanding pass by reference method.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 57

3.11.3 Algorithm Design

x y

Read
a & b

a & b value
 got swapped

swap(&a, &b)

x

temp

x

x

ba

temp

a b

a b

a b

temp

temp

y

y

y
&a &b 10

10&b&a

20 10

2020

10 20

&a &b 10

&a &b

10 20

Emertxe Information Technologies Pvt Ltd. Copyright 2018

58 Emertxe Information Technologies Pvt Ltd

3.11.4 Dry run

3.11.5 Practical Implementation

1. Swapping the contents in two memory locations (can be just integer or an address or
a big structure).

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 59

3.12 Quiz

Short Answer

1. What are the difference between formal arguments and actual

arguments in a function ?

2. Are parameter names mandatory in function prototype ? Give an example ?

3. What information does function prototype carry ? Give an example ?

3.13 Lab Work

Run all the related templates and understand them. Complete all the assignments in 3 days

Emertxe Information Technologies Pvt Ltd. Copyright 2018

60 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Implement your own ctype library.
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Implement below mentioned bitwise functions,
int get nbits(int num, int n);
int set nbits(int num, int n, int val);
int get nbits from pos(int num, int n, int pos);
int set nbits from pos(int num, int n, int pos, int val);
int toggle bits from pos(int num, int n, int pos);
int print bits(unsigned int num, int n);

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 61

(Id) / Date Assignment Topic

() Read int i, Read 0 ≤ a ≤ b ≤ 31. Read an int n, put the
(b-a+1)lsb’s of n into i[b:a]
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read an int, & a no. n. Circular right & left shift the int by n.

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Create a library file named libbitwise.c and include all bitwise func-
tions in it.
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

62 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Write a C program to swap two variables by using pass by reference
method.
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Average n number by taking input in 3 different ways

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Recursive factorial without using any other function than main

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 63

(Id) / Date Assignment Topic

() Write the functions for post and pre increment, passing int pointer
as their parameter
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Fibonacci with using its recursive relation
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

64 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 4

Standard Input / Output

4.1 printf & scanf

4.1.1 The first parameter, format string

Notes:

int main()

{

char *a = "Emertxe";

printf(a);

}

int main()

{

int a = 0;

char str[10];

scanf("%d%s", &a, str);

printf(str);

printf("%d%s", a, str);

}

65

Emertxe Information Technologies Pvt Ltd. Copyright 2018

66 Emertxe Information Technologies Pvt Ltd

4.1.2 Pointers with printf and scanf

Which of the following is a valid input parameter to scanf?
� &i, &a[i], a + i, &c, &str[i], str + i
� Is &str ≡ &str[0] ≡ str?
What’s the output:
� printf(”%c”, *(”C is an Ocean” +5));
� printf(”%c”, *(&5[”C is an Ocean”] -1));
Notes:

4.1.3 Return values

printf returns the number of characters printed.
scanf returns the number of items successfully read.
Notes:

4.1.4 Eating whitespaces by %d, %f, ...

scanf eats white spaces to be able to read any integer or real equivalent number.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 67

4.2 % character conversion table

Format Prints argument as

\c Escape sequences that are converted into the characters they represent:
\ (backslash), a (alert), b (backspace), f (formfeed), n (newline), r (carriage
return), t (horizontal tab), v (vertical tab)
any other character not mentioned above (causes printf to ignore any re-
maining characters in format)
0nnn, where nnn is a 1, 2 or 3-digit octal number to be converted to a byte
with the corresponding octal value

%c the character referred to by the least significant 8 bits of the numeric value
of argument; truncates argument to the nearest integer

%d a decimal integer (0 if no arguments are available); truncates argument to
the nearest integer

%e a floating point number (0.0 if no arguments are available); the format used
is [-]d.ddde[+—-]dd where the number of digits after the decimal point is
controlled by the value of precision

%E a floating point number (0.0 if no arguments are available); the format used
is [-]d.dddE[+—-]dd where the number of digits after the decimal point is
controlled by the value of precision

%f a floating point number (0.0 if no arguments are available); the format used
is [-]ddd.ddd where the number of digits after the decimal point is controlled
by the value of precision

%g a floating point number (0.0 if no arguments are available); the format used
is the most compact result from applying the ’e’ and ’f’ conversions

%G a floating point number (0.0 if no arguments are available); the format used
is the most compact result from applying the ’E’ and ’f’ conversions

%lf a double (printf only)

%h a short integer

%i a decimal integer (0 if no arguments are available); truncates argument to
the nearest integer

%l a long integer

%L a long long integer

%ll a long long integer

%o an unsigned octal number (0 if no arguments are available); truncates argu-
ment to the nearest integer

%p a pointer

%s a string

%u an unsigned decimal integer (0 if no arguments are available); truncates
argument to the nearest integer

%x an unsigned hexadecimal number displayed in lowercase display (0 if no
arguments are available); truncates argument to the nearest integer

%X an unsigned hexadecimal number displayed in uppercase display (0 if no
arguments are available); truncates argument to the nearest integer

%% prints a %; no argument is converted

%* (scanf) ignore the value read; (printf) replace by the value of its correspond-
ing parameter

%[] pattern matching read (scanf only)

Emertxe Information Technologies Pvt Ltd. Copyright 2018

68 Emertxe Information Technologies Pvt Ltd

4.3 Analyze the following loop

int main()

{

char ch;

scanf("%[^,]", &ch);

while (ch != ’e’)

{

switch (ch)

{

case ’a’:

break;

case ’b’:

break;

default:

break;

}

printf("%c\n", ch);

scanf("%[^,]", &ch);

}

/*

* Input given is:

* a,b,c,d,e,f,g,h

*/

}

Find out the Bug in the above code.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 69

Notes:

• Five reasons for a flush

– Buffer full

– fflush

– \n

– Normal program termination

– Read

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

70 Emertxe Information Technologies Pvt Ltd

4.4 Practice - 1

Read the strings entered by the user and print the largest line among that.

4.4.1 Prerequisite

1. Array Concepts

2. fgets usage

4.4.2 Objective

1. Understanding and Implementing fgets function.

2. Understanding simple array concepts.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 71

4.4.3 Algorithm Design

`

no

ret =
read str

store in
largest

if ret
== NULL

replace
largest

exit

ret =
read str

if ret
!= NULL

display
content

of largest

strlen(str)<
strlen(largest)

yes

no

yes

no

yes

char str[MAXLEN]
char largest[MAXLEN]

Coding:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

72 Emertxe Information Technologies Pvt Ltd

4.4.4 Dry run

4.4.5 Practical Implementation

1. Collecting the biggest line from database.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 73

4.5 Quiz

Short Answers

1. What is the output for the following code ?

printf("Hello World" + 4);

2. What would be the output of the following C program ?

#include <stdio.h>

int main()

{

int i=43;

printf("%d",printf("%d",printf("%d",i)));

return 0;

}

3. Why must x be preceded by & inside scanf ?

4. Why getchar return value is of type int ?

4.6 Lab Work

Complete all the templates and asignments by 2 days

Emertxe Information Technologies Pvt Ltd. Copyright 2018

74 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Write a program to count number of characters, words and lines,
entered through stdin.
Prerequisites:

Algorithm:

Dry Run:

Objective:

() Write a program to copy its input to its output, replacing each string
of one or more blanks by a single blank.
Prerequisites:

Algorithm:

Dry Run:

Objective:

()

()

()

()

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 5

Day 4: Input / Output - Files

5.1 What is a file?

File as a sequence of bytes
Notes:

5.2 Why files?

• Persistent storage

• Theoretically unlimited size

• Flexibility of putting any data type into it

Notes:

5.3 The functions for file operations

• fopen - Open. FILE *fopen(const char *path, const char *mode);

• fwrite - Write → Read Modify Write. size t fwrite(const void *ptr, size t size, size t
nmemb, FILE *stream);

• fread - Read. size t fread(void *ptr, size t size, size t nmemb, FILE *stream);

• fclose - Close. int fclose(FILE *fp);

• fseek - Seek. int fseek(FILE *stream, long offset, int whence);

• feof - End of File check. int feof(FILE *stream);

Notes:

75

Emertxe Information Technologies Pvt Ltd. Copyright 2018

76 Emertxe Information Technologies Pvt Ltd

5.3.1 fgetc()

Notes:

5.3.2 Modes the file can be opened

The various modes in which a file can be opened using fopen:
r: Open text file for reading. The stream is positioned at the beginning of the file.
r+: Open for reading and writing. The stream is positioned at the beginning of the file.
w: Truncate file to zero length or create text file for writing. The stream is positioned

at the beginning of the file.
w+: Open for reading and writing. The file is created if it does not exist, otherwise it

is truncated. The stream is positioned at the beginning of the file.
a: Open for appending (writing at end of file). The file is created if it does not exist.

The stream is positioned at the end of the file.
a+: Open for reading and appending (writing at end of file). The file is created if it

does not exist. The initial file position for reading is at the beginning of the file, but output
is always appended to the end of the file.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 77

int main(int argc, char *argv[])

{

FILE *fp;

int ch;

if (argc == 1)

{

printf("Usage: %s <file_to_cat>\n");

return -1;

}

fp = fopen(argv[1], "r");

if (fp == NULL)

{

perror("fopen");

return -1;

}

while ((ch = fgetc(fp)) != EOF)

{

fputc(ch, stdout);

}

return 0;

}

DIU: Try the above program by using fgets and fputs.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

78 Emertxe Information Technologies Pvt Ltd

5.4 Practice - 1

Reverse a file.

5.4.1 Prerequisite

1. Familiarity in File related functions

5.4.2 Objective

1. Using file related functions like fopen, fseek, fgetc, fputc, flose.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 79

5.4.3 Algorithm Design

FILE *fp1;
FILE *fp2;

Int ch;

fp1=open file
for read

check fp1
 status

ret=seek to
last character

print error
close fp1

exit

check ret
status

read a
character
from fp1

write the
character
into fp2

ret=seek to
Last char

before current pos

close
opened files

close
 opened files

success

fail

fail

success

yes

fail

fail

success

return 0

success
fp2=open

file to write

print error
exit

check fp2
status

no

argc < 3

check ret
status

Emertxe Information Technologies Pvt Ltd. Copyright 2018

80 Emertxe Information Technologies Pvt Ltd

5.4.4 Dry run

5.4.5 Practical Implementation

1. Usage of fseek will help to do Random access of data among the databases.

5.5 Quiz

1. What is the result of calling fopen continously without fclose ?

2. Why fgets is preferred over gets ?

3. While I am writing buffers to the file and parallely reading them,

I am not getting the buffer which I wrote. What can be problem.

How can I solve it ?

4. What will be the output ?

#include <stdio.h>

#include <unistd.h>

int main()

{

while(1)

{

fprintf(stdout,"hello-out");

fprintf(stderr,"hello-err");

sleep(1);

}

return 0;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 81

5.6 Lab Work

Complete all assignments in 2 days with progress on the project

Emertxe Information Technologies Pvt Ltd. Copyright 2018

82 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Read input till eof and print no of words read.
Prerequisites:

Algorithm:

Dry Run:

Objective:

() Copy one file into another
Prerequisites:

Algorithm:

Dry Run:

Objective:

() Concatenate two files, as ./your cat file1 file2 [filenew] and like
the command ’cat’
Prerequisites:

Algorithm:

Dry Run:

Objective:

()

()

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 6

Day - 5 & 6: Strings & Pointers

6.1 Strings

C strings are low-level in nature (and bug-prone). C does not support strings as a data
type - it is just an array of characters. But it has library support for strings (as in strstr,
strcmp etc.) in literals. This leads to the close relationship between arrays and strings in
C.

if(sizeof("Hello" "World") == sizeof("Hello") + sizeof("World"))

printf("WoW\n");

else

printf("Huh\n");

Notes:

6.2 Initializing a string

char a[5] = "Hello", b[] = "Hi", c[5] = "Hi";

char str1[] = "Hi", str2[] = {’H’, ’i’};

printf("%s:%s:%s", a, b, c);

printf("%s:%s", str1, str2);

Notes:

6.3 Sizes of

char *str1 = "Hi";

char str2[] = "Hi";

printf("%d", sizeof(str1));

printf("%d", sizeof(str2));

Notes:

83

Emertxe Information Technologies Pvt Ltd. Copyright 2018

84 Emertxe Information Technologies Pvt Ltd

6.4 String Manipulations

Strings are character arrays and an array name refers to an address - a pointer constant.
So, there is a close relationship between arrays, string and pointers. Exploiting this makes
string manipulation a very efficient one. For example:

int my_strlen(const char *s)

{

char *t = s;

while (*t++)

;

return t-s-1;

}

Notes:

Another way of writing the above code is

int my_strlen(const char *s)

{

int i = 0;

while (s[i] != ’\0’)

{

i++;

}

return i - 1;

}

DIU: Implement strcpy function.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 85

On the other hand, this also leads to lots of inconsistencies and problems. Consider:

char s1[10] = "string";

char s2[10];

s2 = "string";

/* error! only initialization is possible and not the */

/* assignment - because array assignment is not possible */

char *s3 = "string";

char *s4;

s4 = "string";

/* s3 is a pointer, so both initialization */

/* and assignment are possible */

s1[0] = ’S’;

/* O.K. s1 now contains the string "String" */

s3[0] = ’S’;

/* It points to a string literal - it is read only */

/* So, undefined behavior */

/* assume that sizeof pointer is 4 bytes */

printf(" \%d \%d \%d ", sizeof(s1), sizeof(s3), sizeof("string"));

/* sizeof the array, pointer and string literal respectively.*/

printf(" \%d \%d \%d ", strlen(s1), strlen(s3), strlen("string"));

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

86 Emertxe Information Technologies Pvt Ltd

In C, the strings are always NULL terminated. This is often convenient but also bug
prone. Consider the example of strcpy() - inside the function there is no way to check
neither the argument is properly null terminated nor the target is capable enough to hold
the source. In both cases, it leads to undefined behavior because it reads/writes past the
array bounds.

The serious disadvantage of this representation is to know the length of the string,
traversal has to be made until the end of the string. Except such inconveniences, the C
string implementation works out better in terms of efficiency and ease of implementation.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 87

6.5 The program segments

List the segments of a program:

• Code

• Data

• Stack

• Heap

Notes:

BSS: Block Started by Symbol

Emertxe Information Technologies Pvt Ltd. Copyright 2018

88 Emertxe Information Technologies Pvt Ltd

Example: Modifying the constant string

char *a = "Hello World";

main()

{

a[1] = ’i’;

printf("%s", a);

}

Notes:

6.5.1 Shared Strings

In C, string constants (string literals) are shared as they cannot be modified. Consider the
following code:

char *s1 = "string";

char *s2 = "string";

s1[0] = ’S’;

printf("%s", s2);

/* may print ’String’ !!! */

Since string literals are immutable in C, the compiler is free store both the string literals
in a single location and so can assign the same to both s1 and s2. Such sharing of string is
an optimization technique done by the compiler to save space.

It is easy to check if the two string literals are shared or not in your compiler/platform.

if(s1 == s2)

{

printf("Yes. shared strings");

}

/* or check it directly with the string constants */

if("string" == "string")

{

printf("Yes. shared strings");

}

This checking work on the common sense, that no two different string constants can be
stored in the same location.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 89

6.6 Why pointers?

• To have C as a low level language being a high level language.

• To have the dynamic allocation mechanism.

• To achieve the similar results as of ”pass by variable” parameter passing mechanism
in function, by passing the reference.

• Returning more than one value in a function.

Notes:

6.7 Pointers & the 7 rules

6.7.1 Rule #1: Pointer as a integer variable

Notes:

6.7.2 Rule #2: Referencing & Dereferencing

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

90 Emertxe Information Technologies Pvt Ltd

6.7.3 Rule #3: Type of a pointer

Pointer of type t ≡ t Pointer ≡ (t *) ≡ A variable which contains an address, which when
dereferenced becomes a variable of type t
Notes:

• All pointers are of same size

• Pointers are defined indirectly

6.7.4 Rule #4: Value of a Pointer

Pointing means Containing, i.e.,
Pointer pointing to a variable ≡ Pointer contains the address of the variable
Notes:

6.7.5 Rule #5: NULL pointer

Pointer Value of zero ≡ Null Addr ≡ NULL pointer ≡ Pointing to nothing
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 91

Segmentation Fault

int main()

{

int a[5], i;

printf("Enter even numbers\n");

for(i = 100; i <= 1000; i++)

scanf("%d", &a[i]);

printf("Entered even nos. are\n");

for(i = 1; i <= 1000; i++)

printf("%d", a[i]);

return 0;

}

Notes:

Bus Error

int main()

{

char a[sizeof(int) + 1];

int *x, *y;

x = &a[0];

y = &a[1];

scanf("%d%d", x, y);

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

92 Emertxe Information Technologies Pvt Ltd

6.7.6 Array Interpretations

Two Interpretations:
? Original Variable
? Constant Pointer (Compiler only)

Rule: When (to interpret array variable as) what?
First variable, then pointer, then warning, then error
Notes:

6.7.7 Rule #6: Arithmetic Operations with Pointers & Arrays

value(p + i) ≡ value(p) + value(i) * sizeof(*p)
Notes:

Array → Collection of variables vs Constant pointer variable

short sa[10];
&sa → Address of the array variable
sa[0] → First element
&sa[0] → Address of the first array element
sa → Constant pointer variable
Notes:

Arrays vs Pointers

� Commutative use
� (a + i) ≡ i + a ≡ &a[i] ≡ &i[a]
� *(a + i) ≡ *(i + a) ≡ a[i] ≡ i[a]
� constant vs variable
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 93

6.7.8 Rule #7: Static & Dynamic Allocation

• Static Allocation ≡ Named Allocation - Compiler’s responsibility to manage it - Done
internally by compiler, when variables are defined

• Dynamic Allocation ≡ Unnamed Allocation - User’s responsibility to manage it - Done
using malloc & free

Notes:

Named & Unnamed allocations

Analogy & Notes:
♦ Named and Unnamed allocation
♦ Analogy with houses with and without names
♦ Removing all pointers from unnamed location

Differences at program segment level

♦ Defining variables (data & stack segmant) vs Getting & giving it from the heap segmant
using malloc & free
♦ int x, int *xp, *ip;
xp = &x;
ip = (int*)(malloc(sizeof(int)));
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

94 Emertxe Information Technologies Pvt Ltd

Dynamic Memory Allocation

In C functions for dynamic memory allocation functions are declared in the header file
<stdlib.h>. In some implementations, it might also be provided in <alloc.h> or <malloc.h>.

malloc

void *malloc(size_t size);

The malloc function allocates a memory block of size size from dynamic memory and returns
pointer to that block if free space is available, other wise it returns a null pointer.

calloc

void *calloc(size_t n, size_t size);

The calloc function returns the memory (all initialized to zero) so may be handy to you if
you want to make sure that the memory is properly initialized. calloc can be considered
as to be internally implemented using malloc (for allocating the memory dynamically) and
later initialize the memory block (with the function, say, memset()) to initialize it to zero.

realloc

void *realloc(void *p, size_t size);

/* allocate similar to malloc */

ptr = realloc(ptr,100);

/* extend */

ptr = realloc(ptr, 250);

/* shrink */

ptr = realloc(ptr,100);

/* release similar to free */

ptr = realloc(ptr,0);

The function realloc has the following capabilities

1. to allocate some memory (if p is null, and size is non-zero, then it is same as mal-
loc(size)),

2. to extend the size of an existing dynamically allocated block (if size is bigger than the
existing size of the block pointed by p),

3. to shrink the size of an existing dynamically allocated block (if size is smaller than
the existing size of the block pointed by p),

4. to release memory (if size is 0 and p is not NULL then it acts like free(p)).

free

void free(void *ptr);

The free function assumes that the argument given is a pointer to the memory that is to
be freed and performs no check to verify that memory has already been allocated.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 95

1. if free() is called on a null pointer, nothing happens.

2. if free() is called on pointer pointing to block other than the one allocated by dynamic
allocation, it will lead to undefined behavior.

3. if free() is called with invalid argument that may collapse the memory management
mechanism.

4. if free() is not called on the dynamically allocated memory block after its use, it will
lead to memory leaks.

Differences between a pointer and an array

• Variable pointer vs Constant pointer

• sizeof a pointer and an array

• Initialization to point to correct location vs Correctly pointing

• char *str = “str”; vs char str[] = “str”;

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

96 Emertxe Information Technologies Pvt Ltd

6.8 Static vs Dynamical Allocation of 2-D arrays

Multi-dimensional arrays can be implemented in two ways: rectangular and ragged. C
supports both of them (and you can mix them also). When we do static allocation, we
follow rectangular array. When we pass command line arguments we are using ragged
array and we can implement ragged arrays with pointers. Let us consider an example of
two-dimensional array:

Note that ragged arrays need extra memory locations for storing the pointers.

• Both dimensions static (Rectangular)

/* rectanguar array*/

int rec [10][10];

/* takes totally 10 * 10 * sizeof(int) bytes */

• One dimension static, one dynamic (Mix of Rectangular & Ragged)

int *ra[10]; /* ragged and rectangular array */

int i;

for(int i = 0; i < 10; i++)

ra[i] = (int*) malloc(10 * sizeof(int));

/* total memory used

10 * sizeof(int *) + 10 * 10 * sizeof(int) bytes */

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 97

Notes:

• Both dimensions dynamic (Ragged)

/* ragged array */

int **arr;

/* takes 2 bytes for arr */

int i;

arr = (int **) malloc (10 * sizeof(int*));

/* takes 10 * sizeof(int*) for first level of indirection */

for(i = 0; i < 10; i++)

arr[i] = (int*) malloc(10 * sizeof(int));

/* total memory used */

/* 1 * sizeof(int **) + 10 * sizeof(int *) */

/* + 10 * 10 * sizeof(int) bytes */

Notes:

Notes: So ragged arrays usually take more memory than static arrays. Although it
seems that it takes more memory it is not the case always. In a multidimensional array,
if all the elements are of same size, and we know them at compile time then rectangular
arrays are advantageous. But this is an ideal case. In real world programming, in
many cases we don’t know it. Consider a requirement of storing an array of strings of
variable lengths. Here the memory can be efficiently utilized with ragged arrays and
is advantageous than rectangular arrays.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

98 Emertxe Information Technologies Pvt Ltd

Notes:

• Defining different ways

• Pointer interpretable

• When to use what

6.8.1 Various equivalences in 2-D arrays

• a[i][j] ≡ *(a[i] + j) ≡ *(*(a + i) + j) ≡ (*(a + i))[j] ≡ j[a[i]] ≡ j[i[a]] ≡ j[*(a + i)]
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 99

6.8.2 2-D arrays using a single level pointer

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

100 Emertxe Information Technologies Pvt Ltd

6.9 Function Pointers

6.9.1 Why Function Pointers?

• ”Call back functions” provide the solution to following requirements:

• Chunk of code that can be called independently and is standalone

• Independent code that can be used to iterate over a collection of objects

• Event management which is essentially asynchronous where there may be several
objects that may be interested in ”Listening” such an event

• ”Registering” a piece of code and calling it later when required.

6.9.2 Function Name - The Second Interpretation

C provides function pointers that are pretty low-level, efficient and direct way of providing
support to callback functions.
Notes:
Only Rule #1 to Rule #4 are applicable for function pointers

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 101

6.9.3 Theory & Examples

A pointer stores an address. The address is not limited to variables and objects - it can be
of functions also. The code for the function is available in the memory. The starting address
is stored in a function pointer. In other words, a function pointer is best thought of as an
address, usually in a code/text segment, where that function’s executable code is stored.
Consider one such example, the bsearch function in the standard header file ¡stdlib.h¿:

void *bsearch(void *key, void *base, size_t num, size_t width,

int (*compare)(void *elem1, void *elem2));

The last parameter is a function pointer. It points to a function that can compare
two elements (of the sorted array, pointed by base) and return an int as a result. This
serves as general method for the usage of function pointers. The bsearch function does not
know anything about the elements in the array and so it cannot decide how to compare the
elements in the array. To make a decision on this, we should have a separately function for
it and pass it to bsearch. Whenever bsearch needs to compare, it will call this function to
do it. This is a simple usage of function pointers as callback methods.

Another example in C standard library for exploiting the use of function pointers is
atexit, whose prototype is given as:

int atexit(int (*)(void));

You can register the functions to be called when the program exits. Consider:

int my_function ()

{

printf("Exiting the program \\n");

return 0;

}

int main()

{

printf("Inside main\n");

atexit(my_function);

printf("About to quit\n");

}

Output choices:
+ Inside main
+ About to quit
+ Exiting the program

On the normal termination of the program, (even if the program is terminated by calling
exit function) the functions registered with atexit will be called.

Thus, function pointers serve as a good example to show the low-level nature of C. The
problem with this low-level nature is that it is not secure and type-safe. It is easy to violate

Emertxe Information Technologies Pvt Ltd. Copyright 2018

102 Emertxe Information Technologies Pvt Ltd

the basic rule that the return type and arguments must be identical for the function pointers
and the function assigned:

void (*functionPtr)(int, float);

void foo(int i, float f)

{

return 0;

}

functionPtr = foo;

/* No problem, the arguments and return type matches */

extern bar();

functionPtr = bar;

/* There is no way by which the compiler can verify that the */

/* arguments and return types matches correctly */

If the arguments and return type does not match, that may lead to undefined behavior.
No doubt, function pointer is a very powerful feature in C but is prone to misuse and is
sometimes unsafe because the programmers can easily make mistakes, as it is not type-safe.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 103

6.10 Practice - 1

Write a function read int to read an integer

6.10.1 Prerequisite

1. Basic pointer concept

2. getchar usage

6.10.2 Objective

1. Implementing pass by reference method.

2. Converting character digits into integer digits.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

104 Emertxe Information Technologies Pvt Ltd

6.10.3 Algorithm Design

int num=0
int i=0

read ch

convert
ch into int

isdigit
(ch)

make new int
 a part of num

return i

i++

update num
in *ptr

int read_int
(int *ptr)ret=read_int

(&var)

display var
contents

var=0

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 105

6.10.4 Dry run

6.10.5 Practical Implementation

1. Can be used for extracting the numbers stored in a string data.

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

106 Emertxe Information Technologies Pvt Ltd

6.11 Practice - 2

Write an alternative version of squeeze(s1,s2) that deletes each character in s1 that matches
any character in the string s2.

6.11.1 Prerequisite

1. Pointer Concepts.

6.11.2 Objective

1. Revising float and double bits representation.

2. Understanding pointer type casting concept.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 107

6.11.3 Algorithm Design

Read str1
 & str2

display str1

squeeze
(str1, str2)

char *squeeze
(char *s1,
char *s2)

temp_s1=s1
temp_s2=s2

*temp_s1
!='\0'

*temp_s2
!='\0'

*temp_s1!=
*temp_s2

*temp=
*(temp+1)

temp=
temp_s1

temp++

*temp!='\0'

temp_s2++

return s1

temp_s2=s2
temp_s1++

temp_s2=s2

Emertxe Information Technologies Pvt Ltd. Copyright 2018

108 Emertxe Information Technologies Pvt Ltd

H 0LLE

\0

\0

R HCTI EI

H

0LLE \0

E

\0R HCTI EI

0LL \0

L

\0R HCTI EI

L

\0R HCTI EI

0LL \0

0LL \0

0

\0R HCTI EI

0LL \0

\0

\0R HCTI EI

H 0LLE

\0

\0

R HCTI EI

H

0LLE \0

E

\0R HCTI EI

0LL \0

L

\0R HCTI EI

L

\0R HCTI EI

0LL \0

0LL \0

0

\0R HCTI EI

0LL \0

\0

\0R HCTI EI

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 109

6.11.4 Dry run

6.11.5 Practical Implementation

1. Store informations inside floating point numbers.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

110 Emertxe Information Technologies Pvt Ltd

6.12 Quiz

Short Answer

1. What is the result of

int main()

{

while (1)

{

malloc(100);

}

return 0;

}

2. What will happen if I am not freeing the dynamically allocated memory ?

3. Pointer which holds an address which is out of scope is termed as _____

pointer.

4. What is wrong in this code.

int main()

{

int *ip;

ip = malloc(20);

for (i = 0; i < 20; i++)

{

scanf("%d", &ip[i]);

}

return 0;

}

5. How can I use calloc to allocate memory for 10 integers, initialized

with zeroes?

How can I achieve it without using calloc ?

6. int main()

{

char *ptr;

get_name(); // modify the function prototype so that inside ptr,

I need an address which points to a name.

}

7. What is tunable array ? How can I use it ?

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 111

8. What are the legal and illegal things allowed in pointers ?

9. typedef int int_10[10];

int_10 arr;

What is the size of arr ?

What is the size of arr[0] ?

What is the size of int_10[0] ?

What is the size of int_10[2] ?

10. int arr[10] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

char *pa;

pa = arr;

*++pa = 0x01;

printf("arr[0] = %X , arr[1] = %X\n", arr[0], arr[1]);

11. How can we achieve genericity feature in C language ?

Illustrate with an example.

True or False

1. Dangling pointer errors can be solved with the help of NULL pointers.

(T / F)

6.13 Lab Work

Complete all the assignments in 7 days

Emertxe Information Technologies Pvt Ltd. Copyright 2018

112 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Write a function read int to read an integer

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Print bits of float & double. Check IEEE std.

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Generate a n*n magic square (n is odd +ve no.)

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 113

(Id) / Date Assignment Topic

() Take 8 consecutive bytes in memory. Provide a menu to
manipulate or display the value of variable of type t (input) & in-
dexed at i (i/p)
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Implement i) int getword(char *word) ii) int itoa(int n, char *s)
iii) atoi(const char *s)
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Variance calculation with and without static/dynamic arrays

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

114 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Read n & n floats in a float array ’store’. Print the values in
sorted order without modifying or copying ’store’
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read n for the number of fragments (≤ 32). Read ki as the
number of integer elements (≤ 32) in each fragment. Read all the
elements of all the fragments. Sort each fragment and store their
average as (ki + 1)th element. Sort the fragments based on their
average value and print all. Re-sort the fragments based on their
median and print all
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read n & n person names of (i) maxlen 32, and (ii) avg len a.
Sort and print the names
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 115

(Id) / Date Assignment Topic

() Implement string functions strstr, strtok, strcmp,
memmove
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read a string and print it in reverse without storing in an array(try
recursive and non-recursive methods).

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Write an alternative version of squeeze(s1,s2) that deletes each char-
acter in s1 that matches any character in the string s2

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

116 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Check for your Endianess of your processor

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Implement binary search for int, double, string, rational

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Implement calc mean for all types

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 117

(Id) / Date Assignment Topic

() Implement myprintf()

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Implement myscanf()

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Tower of Hanoi recursively

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

118 Emertxe Information Technologies Pvt Ltd

(Id) / Date Assignment Topic

() Take n & k (1 ≤ k ≤ 10) as i/p. Generate consecutive NRPS of
len n using k distinct char(0 ≤ k ≤ 9)
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Generate 0-n combination of a n-length string recursively and
non-recursively
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Matrix - Transverse, Inverse, Determinent

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 7

Day 7: Preprocessing

7.1 What is preprocessing & When is it done?

Preprocessor is a powerful tool with raw power. Preprocessor is often provided as a separate
tool with the C compilers. After preprocessing the preprocessed output is sent to the C
compiler for compilation.

The main functionalities of the preprocessor are: file inclusion (#include), conditional
compilation (#ifdefs) and textual replacement (#defines). Preprocessor is also responsible
for removing the comments from source code (// and /* */), processing the line continuation
character (\ character), processing escape sequences (characters such as \ n), processing of
the trigraph sequences (such as ′?? <′character for {) etc.
Notes:

119

Emertxe Information Technologies Pvt Ltd. Copyright 2018

120 Emertxe Information Technologies Pvt Ltd

7.2 Built-in Defines

• __FILE__ : Represents the current source file name in which it appears.

• __LINE__ : Represents the current line number during the preprocessing in the
source file.

• __DATE__ : Represents the current date during the preprocessing.

• __TIME__ : Represents the current time at that point of preprocessing.

• __STDC__ : This constant is defined to be true if the compiler conforms to ANSI/ISO
C standard.

• __func__ : Represents the current function name in which it appears.

Example:

printf("Error in %s @ %d on %s @ %s \n",

__FILE__, __LINE__, __DATE__, __TIME__);

Notes:

7.3 The preprocessor directives

The C tradition is to have function declarations and type declarations in the header files
and the function definitions in the source files. The preprocessor does textual replacement
of the header file in the source file with the #include directive (while expanding necessary
macros, doing conditional compilation etc as necessary).

7.3.1 #include

Q: What is the difference between <> and ” ” with respect to #include? A:
Notes:

Header vs Source File

• All Declarations

• All Definitions except Typedefs

• Typedefs

• Defines

• Inline functions

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 121

7.3.2 #ifdef, #ifndef, #else, #endif

Notes: In many cases, we need to have more than one version of the program and depend-
ing on the target platform, we may wish to compile accordingly. Conditional compilation
supported by the preprocessor makes this easier. In any non-trivial implementations, it is
usual to support debug and release versions and preprocessor comes handy. You can use
conditional compilation to support that. An another common usage is to avoid multiple
inclusion of headers.

7.3.3 #define, #undef

Using #define directive is not limited to the conditional compilation alone - it is used to
provide symbolic constants as well as the function like macro expansion. The directives for
conditional compilation are: #if, #else, #elif, #endif, #ifdef, #ifndef, #endif.
Q: Whats the difference between a macro and a define
A:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

122 Emertxe Information Technologies Pvt Ltd

#define Constants

Prior to ANSI C where const was not available, programmers just used the # define directive
to have the functionality of the constants. The #define is not type safe and can be redefined
again, defeating the whole purpose. Use consts and enums (for set of related values) instead
of #defines:

int main()

{

#define MYCONSTANT 100

enum { enum_constant = 100; };

const int int_constant = 100;

printf("%d %d %d", MYCONSTANT enum_constant, int_constant);

}

Note that, with #undef directive, you an undefined a previously defined preprocessor con-
stant or macro. OK, one more example:
Will the following tiny code work!!!

#include <stdlib.h>

int main()

{

char *msg = "Hello World";

printf("%s", msg);

#include <stdio.h>

}

#include <stdio.h>

#define Macros

The # define directive can be used for function like macro definitions. What the main
differences between the macros and functions? Consider the following macro definition:

#define max_macro(a, b) (a > b) ? a : b

inline int max_function (int a, int b)

{

return ((a > b) ? a : b);

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 123

7.3.4 #if, #else, #elif, #endif

#include <stdio.h>

#if (DEBUG == 1)

#define ERR_PRINT(args...) printf("%d:%s", __LINE__, \

__FILE__); printf(args)

#define WARN_PRINT(args...)

#define DBG_PRINT(args...)

#elif(DEBUG == 2)

#define ERR_PRINT(args...) printf("%d:%s", __LINE__, \

__FILE__); printf(args)

#define WARN_PRINT(args...) printf("%d:%s", __LINE__, \

__FILE__); printf(args)

#define DBG_PRINT(args...)

#elif(DEBUG == 3)

#define ERR_PRINT(args...) printf("%d:\%s", __LINE__, \

__FILE__); printf(args)

#define WARN_PRINT(args...) printf("%d:\%s", __LINE__, \

__FILE__); printf(args)

#define DBG_PRINT(args...) printf("%d:\%s", __LINE__, \

__FILE__); printf(args)

#else

#define ERR_PRINT(args...)

#define WARN_PRINT(args...)

#define DBG_PRINT(args...)

#endif

main()

{

ERR_PRINT("This is error %d\n", 3);

DBG_PRINT("This is info\n");

WARN_PRINT("This is warning %d\n", 1);

return 0;

}

Notes:

if defined (DEBUG)

/* do the checking */

endif

Emertxe Information Technologies Pvt Ltd. Copyright 2018

124 Emertxe Information Technologies Pvt Ltd

7.3.5 #error, #line

C provides other constructs also like #error to pass the error messages to the compiler and
#line to change the line number to be kept track while issuing such error messages.
Notes:

7.3.6 #pragma

The directive #pragma indicates that a particular feature is implementation dependent. If
a compiler encounters an unknown option in # pragma, it is free to ignore it.
Notes:
These are compiler/assembler/linker dependent flags. Will be discussed in detail during
embedded modules’ discussion

7.3.7 #, ##

The preprocessor supports two operators useful for macro expansion: stringization(”#”)
and concatenation (”##”) operations.

#define STRINGIZE(string) #string

#define CONCATENATE(string1,string1) string1##string2

/* sample use: */

CONCATENATE(dou, ble) d;

/* this is same as declaring d as:*/

/* double d; */

printf("The int keyword is %s", STRINGIZE(int));

/* prints: the int keyword is int */

One more:

#define print(expr) printf(#expr "=%d", expr);

#define CAT(x, y) (x##y)

#define STRFY(x) #x

int main()

{

int CAT(x, 0);

CAT(x, 0) = 5;

printf(STRFY(CAT(Hello, World)));

print(CAT(x, 0));

}

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 125

7.4 Macro know-hows

1. Macros are not type-checked
Example:

int k = max_macro(i, j);

/* works with int */

float max_float = max_macro(10.0, 20.0);

/* also works with float constants */

int k = max_function(i, j);

/* works with int */

float max_float = max_function (10.0, 20.0);

/* does not work - you can pass only integral values */

2. Macros have side effects during textual replacement whereas functions does not have
that since textual replacement is not done but a function call is made
Example:

int k = max_macro (i++, j);

/* we are in trouble as i++ is evaluated twice */

/* int k = (i++ > j) ? i++ : j */

int k = max_function (i++, j);

/* no problem, as it is not expanded, but a call to max_function is made */

3. Macros might result in faster code as textual replacement is done and no function call
overhead is involved.

4. The function evaluates its arguments. A macro does textual replacement of its argu-
ments, so it does not evaluate its arguments

5. A function gets generated as a code and hence has an address (so you can use it
for storing it in a function pointer). A preprocessor macro gets replaced with text
replacement, so a macro becomes part of code in which it is used (it does not have
an address by itself like a function, so you cannot use it for storing it in a function
pointer).

typedef int (*fp)(int, int);

fp = max_function;

int k = fp(10, 20); /* ok, calls max_function */

fp = max_macro; /* error; unknown identifier max_macro */

int k = fp(10, 20);

Emertxe Information Technologies Pvt Ltd. Copyright 2018

126 Emertxe Information Technologies Pvt Ltd

7.5 Practice - 1

Define a macro SIZEOF(x), where x is a variable, without using sizof operator.

7.5.1 Prerequisite

1. Knowledge in Macros

2. Pointer concepts

7.5.2 Objective

1. Understanding usage of macros with arguments.

2. Pointer type casting.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 127

7.5.3 Algorithm Design

i=
SIZEOF(x)

int x

display i

Emertxe Information Technologies Pvt Ltd. Copyright 2018

128 Emertxe Information Technologies Pvt Ltd

7.5.4 Dry run

7.5.5 Practical Implementation

1. While counting the distance between two memory locations.

7.6 Quiz

Short Answers

1. Observe the result of gcc -E option for the following code.

int main()

{

int i = EOF;

char *ptr = NULL;

}

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 129

7.7 Lab Work

Try all the preprocessor templates and complete the assignments in a day

(Id) / Date Assignment Topic

() Define a macro SIZEOF(x), where x is a variable, without using
sizeof operator.

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Define a macro swap(t,x,y) that interchanges two arguments of type
t.

Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

()

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

130 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 8

Day 8: User Defined Types

8.1 Why structures & Why unions?

8.1.1 User-Defined Types

Arrays, enums, structs, unions are the building blocks for the users to build their own type,
as they need them. They can be built using primitive or aggregate types. Arrays have been
already covered. In this chapter enums, structs and unions are covered
Notes:

131

Emertxe Information Technologies Pvt Ltd. Copyright 2018

132 Emertxe Information Technologies Pvt Ltd

8.2 Various ways of defining a user-defined type

Combination of struct, union and arrays with typedef

typedef int AgeType;

typedef float SalaryType;

struct _Tag

{

char name[100];

AgeType age;

SalaryType salary;

};

typedef struct _Tag

{

char name[100];

AgeType age;

SalaryType salary;

} Tag;

typedef struct

{

char name[100];

AgeType age;

SalaryType salary;

} Tag;

typedef Tag DB[100];

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 133

8.3 Unions

C unions are of invaluable use in system programming, network programming and other
related areas. For example, screen coordinates in video memory can be addressed in DOS
based machines as pair of bytes in text mode. The first byte is used to represent the
attribute describing the character followed by the actual character itself. A programmer
may wish to use the pair of bytes as one unit or access as individual elements:

/* This is an implementation dependent code */

union VideoMemEntry

{

struct

{

unsigned char attr;

unsigned char value;

}entry;

short attrValue; /* assume sizeof(short)==2 bytes */

}screen[25][80]; /* in a 25 * 80 text mode monitior */

screen[0][0].entry.attr = BOLD;

/* set the attribute of the character to BOLD */

screen[0][0].entry.value = 65;

/* the character to be displayed is ASCII character ’a’ */

/* access them as individual bytes */

screen[0][0].attrValue = (BOLD<<8) + 65;

/* or set them together */

But unions in these languages suffer many problems. For example, it is easy to violate
type-safety as it is easy to access wrong union members mistakenly and you have to keep
track of the currently used member explicitly.
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

134 Emertxe Information Technologies Pvt Ltd

8.4 Size of

Guess the size of the following structures!!!

struct example1

{

char a[2];

int x;

char b[2];

};

sizeof(struct example1) = 12 (Assuming sizeof(int) == 4)

struct example2

{

char a[2];

char b[2];

int x;

};

sizeof(struct example2) = 8 (Assuming sizeof(int) == 4)

8.4.1 Why Padding?

• Ease of operation for compilers - Word aligned vs No padding

• Compiler dependent

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 135

8.5 Initializing Structures

Notes:

8.6 Zero sized array

typedef struct

{

int n;

double val[0];

} Elements;

Elements *elements;

int i, n;

read(n);

elements = (Elements *)(malloc(sizeof(Elements) + n * sizeof(double)));

for(i = 0; i < n; i++)

read(elements->val[i]);

Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

136 Emertxe Information Technologies Pvt Ltd

8.7 Enumeration

In C, an enumeration specifies a set of named integral values and its members can be
explicitly initialized:

enum color {black = 0, white = 1};

typedef enum

{

e_false,

e_true

} Boolean;

There is no constraint about the values, they can be in any order and a same value can
be repeated several times. Enumerations become part of the enclosing namespace and do
not have a namespace of its own. Thus, it pollutes the surrounding namespace with an
annoying problem that the enumerators must be distinct. For example:

enum color {black, white, orange, red, blue};

enum fruits {apple, orange, banana};

/* error: orange redefined */

int black;

/* error: black redefined */

Sometimes it is useful to have unnamed enums:

enum {abort, retry, fail} response;

The enums are internally treated as integral values and this gives an added advantage:
they can take part in expressions as integers. For example:

enum color {red = 1, green = 2, blue = 4};

int yellow = red + green;

/* now yellow = 3 */

int white = red + green + blue;

/* white = 7 */

Enumeration is useful in places where we need a closed set of named values (instead of
having unrelated constant variables or preprocessor constants).
Notes:

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 137

8.8 Bit fields

31:17 16:14 13 12:1 0

Field names: code(31:17), reset(16:14), enable(13), flags(12:1), priority(0)

8.8.1 Bit operations

• Setting a field:

• Resetting a field:

• Extracting the value of a field:

• Putting a value into a field:

Notes:

8.8.2 How with bit fields?

struct

{

unsigned int code:15;

unsigned int reset:3;

unsigned int enable:1;

unsigned int flags:12;

unsigned int priority:1;

} control;

Notes:

8.8.3 Why bit fields?

Ease of Usage
Ex: control.enable = 1;
Notes:

8.8.4 Ease vs Efficiency & Portability

Notes:

8.8.5 Size considerations

Case Study I:

• Increase enable to 2 bits
• Increase enable to 3 bits

Emertxe Information Technologies Pvt Ltd. Copyright 2018

138 Emertxe Information Technologies Pvt Ltd

Case Study II:

• Replace unsigned int to unsigned long
• Replace unsigned int to unsigned short

8.8.6 Bit Padding

Notes: Analogous to bytes and fields

8.9 Practice - 1

8.9.1 Prerequisite

1. Structure usage.

8.9.2 Objective

1. Implementing data base managing concepts.

2. Structure pointer concepts.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 139

8.9.3 Algorithm Design

no

Boot_t **head

read
book_cnt

allocate array
 of bookcnt Pointers
and fill with NULL

display all
options

read choice
from user

choice =
add_book

choice =
display_

book

choice =
delete_book

choice=exit

check status
of allocation

fail

exit
success

yes

yes

yes

no

no

no

add_
book()

display_
book()

delete_
book()

exit

yes

Emertxe Information Technologies Pvt Ltd. Copyright 2018

140 Emertxe Information Technologies Pvt Ltd

i=0

i<book_cnt

entry=get_free_
space of array

pop a
message

allocate memory
for Book_t
structure

entry=-1

return -1

status of
allocation

read book
infos from user

return 0

head[i]=
NULL

i++

return i

return -1yes

no

yes

no

bookname
already
existing

yes

no

success

fail

no

yes

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 141

get book
 name

get book
 price

get auth
 name

return

i=0

i<book_cnt

head[i]=NULL

entered name=
bookname

i++

return

free the book
info in the entry

return

yes

no

yes

no

yes

no

Emertxe Information Technologies Pvt Ltd. Copyright 2018

142 Emertxe Information Technologies Pvt Ltd

i=0

print
bookname

i<bookcnt

head[i]=
NULL

print
book price

print
authname

return

i=0

i<
book_cnt

head[i]
=NULL

return

free(head[i])

no

yes

no

yes

no

no

yes

yes
i++

i++

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Emertxe Information Technologies Pvt Ltd 143

8.9.4 Dry run

8.9.5 Practical Implementation

1. Data base management

8.10 Quiz

Short Answer

1. What is bit padding ? How can I achieve CPU speed

optmisation by bit padding ?

2. How can I avoid bit padding ?

3. What are the limitations of enum while comparing with

Macros & const variables ?

Emertxe Information Technologies Pvt Ltd. Copyright 2018

144 Emertxe Information Technologies Pvt Ltd

8.11 Lab Work

Run all the related templates and understand them. Implement the mini project assigned
to you

(Id) / Date Assignment Topic

() Create a family tree with struct containing name, age, sex,
marital status, child count, and zero-sized array of void pointers. In
case, the member is married, he/she will have at least 1 element in
the array with the first void pointer pointing to its spouse’s structure,
and the remaining to its children’s structures. Provide function for
the following operations for a given person name: 1) Display his/her
info; 2) Display the complete family tree starting from him/her; 3)
Marry with another given person (with validity checks); 4) Display
all the children for requested age group & sex; 5) Add a newly born
child; 6) Preserve the tree
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

() Read a float. Print the demoted integer value without assigning
to int
Prerequisites:

Algorithm:

Dry Run:

Objective:

Practical Implementation:

()

()

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Chapter 9

Day 9: Interview Preparation

9.1 Complicated Nested Definitions

• char **argv
Notes:

• char (*daytab)[13]
Notes:

• char *daytab[13]
Notes:

• void *comp()
Notes:

• void (*comp)()
Notes:

• double (comp())[10]
Notes:

145

Emertxe Information Technologies Pvt Ltd. Copyright 2018

146 Emertxe Information Technologies Pvt Ltd

• char (*(*x())[])()
Notes:

• char (*(*x[3])())[5]
Notes:

Note: Innermost operation defines the final type of the variable

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Appendix A

Assignment Guidelines

The following highlights common deficiencies which lead to loss of marks in Programming
assignments. Review this sheet before turningin each Assignementt to make sure that the
it is complete in all respects.

A.1 Quality of the Source Code

A.1.1 Variable Names

• Use variable names with a clear meaning in the context of the program whenever
possible.

A.1.2 Indentation and Format

• Include adequate white-space in the program to improve readability. Insert blank
lines to group sections of code. Use indentation to improve readability of control flow.
Avoid confusing use of opening/closing braces.

A.1.3 Internal Comments

• Main program comments should describe overall purpose of the program. You should
have a comment at the beginning of each source file describing what that file con-
tains/does. Function comments should describe their purpose and other pertinent
information, if any.

• Compound statements (control flow) should be commented. Finally, see that com-
menting is not overdone and redundant.

A.1.4 Modularity in Design

• Avoid accomplishing too many tasks in one function; use a separate module (Split your
code into multiple logical functions). Also, avoid too many lines of code in a single
module; create more modules. Design should facilitate individual module testing.

147

Emertxe Information Technologies Pvt Ltd. Copyright 2018

148 Emertxe Information Technologies Pvt Ltd

Use automatic/local variables instead of external variables whenever possible. Use
separate header files and implementation files for unrelated functions.

A.2 Program Performance

A.2.1 Correctness of Output

• Ensure that all outputs are correct. Incorrect outputs can lead to substantial loss in
grade

A.2.2 Ease of Use

• The program should facilitate repeated use when used interactively and should allow
easy exit. Requests for interactive input from the user should be clear. Incorrect user
inputs should be captured and explained. Outputs should be well-formatted.

Emertxe Information Technologies Pvt Ltd. Copyright 2018

Appendix B

Grading of Programming
Assignments

• Total points per assignment = 10

• Points for timely/early submission = 1

• The source code is out of 3 points. The distribution of points is as follows:

– (a) The existence of the code itself (1 pts)

– (b) Proper indentation of the code and comments (1 pts)

– (c) Proper naming of the functions, variables + Modularity + (1 pts)

• You get 4 points if the program does exactly what it is supposed to do.

• Two (2) points are reserved for the ease of use, the type of user interface, the ability
to handle various user input errors, or any extra features that your program might
have.

149

Emertxe Information Technologies Pvt Ltd. Copyright 2018

150 Emertxe Information Technologies Pvt Ltd

Emertxe Information Technologies Pvt Ltd. Copyright 2018

