

Team Emertxe

Embedded Systems
Introduction

Embedded Systems
Definition

“Any combination of Hardware and Software

which is intended to do a

 Specific Task

can be called as an Embedded System”

Embedded Systems
Examples

● Stand-alone

● Real Time

● Networked

● Mobile

Embedded Systems
Categories

Embedded Systems
Components

uC
or

SOC
or

uP

Memory

ADC

DAC

FPGA/ASIC

Auxiliary
System

(Power, Cooling)

Human
Interfaces

Diagnostic
Port

Sensors

Actuators

Software

Embedded Systems
Components - Memories - Primary

Type Volatile? Writeable?
Erase
Size

Max Erase
Cycle

Cost per
Byte

Speed

SRAM Yes Yes Byte Unlimited Expensive Fast

DRAM Yes Yes Byte Unlimited Moderate Moderate

Masked
ROM

No No n/a n/a Inexpensive Fast

PROM No
Once

(Ext Prog)
n/a n/a Moderate Fast

EPROM No
Yes

(Ext Prog)
Entire
Chip

Limited Moderate Fast

EEPROM No Yes Byte Limited Expensive
Fast (R)

Slow(W/E)

Flash No Yes Sector Limited Moderate
Fast (R)

Slow(W/E)

NVRAM No Yes Byte Unlimited Expensive Fast

Embedded Systems
Requirements

● Reliability

● Cost-effectiveness

● Low Power Consumption

● Efficient Usage of Processing Power

● Efficient Usage of Memory

● Appropriate Execution Time

Embedded Systems
Challenges

● Efficient Inputs/Outputs

● Embedding an OS

● Code Optimization

● Testing and Debugging

Embedded Systems
Trends in Development

● Processors

● Memory

● Operating Systems

● Programming Languages

● Development Tools

Thank You

Team Emertxe

Internet of Things (IoT)
Introduction

Contents

Internet of Things
Contents

● Introduction to IoT

● IoT Architecture

Internet of Things
Watch Intro

● Internet of Things: How it Works

https://www.youtube.com/watch?v=QSIPNhOiMoE

https://www.bing.com/videos/search?q=think+academy+iot&pc=MOZI&ru=%2Fsearch%3Fq%3Dthink%2Bacademy%2Biot%26pc%3DMOZI%26form%3DMOZLBR&view=detail&mmscn=vwrc&mid=544F4ED1A70FFE4BAB28544F4ED1A70FFE4BAB28&FORM=WRVORC

Internet of Things
Background

● Collecting information from lots of devices is cool - but it
is just telematics.

● Merging perspectives between devices, systems, and
humans to build a better understanding of the world
around us.

● But tying together insight with action —there lies the
promise of IoT.

Internet of Things
Definition

Source: Gartner

“The network of physical objects that contain
embedded technology to communicate and interact

with their internal states or the external environment.”

Internet of Things
What is it?

● Unique objects connected to Internet

● Devices, not people

● Bi-directional communication

● Large, complex data flows

● New types of insight

Internet of Things
Why is it important?

● Worldwide market for IoT solutions to reach $7.2 trillion
in 2020 (IDC)

● Economic value-add is forecast to be $1.9 trillion across
sectors in 2020 (Gartner)

● Leading Industry examples :
utilities, insurance, agriculture, factory, automobiles,
transport, consumer, etc

Internet of Things
The End to End Flow

Internet of Things
The End to End Flow

Internet of Things
The The Gartner Hype Cycle 2017

Internet of Things
Three Trends

Architectural Overview

Internet of Things
POV: IoT is at an Inflection Point

Internet of Things
General Technical Requirements

Internet of Things
Challenges

Internet of Things
First Principle

Internet of Things
Reference Architecture

Internet of Things
Microsoft Azure IoT Services

Internet of Things
Devices and Cloud Pattern

Internet of Things
Example Architecture

Internet of Things
Risks

● Old ways of Thinking can be dangerous

● Understand the business model

● Beware of new patterns: eventual consistency, etc.

● Don’t focus on the device

● Avoid analysis paralysis. Get it done!

Internet of Things
Architecture: Summary

● Architecture is at the center of IoT

● IoT is Advanced “Modern” Architecture

● IoT Projects are Complex - Teamwork is necessary

● These projects are mission critical and difficult

● We can’t learn everything - but we need breadth

● Don’t be afraid - get started and learn

Thank You

Team Emertxe

Devices
Generally known as Things

Devices

What is this Module about??
Well lets see the the data generally flows

Devices
The Data Flow

Today : Present
Total
Classes: 30
No of Days
Present: 30

Devices
The Data Flow

● From the previous slide we can see that, the data flows
through different layers and every layer is important.

● And it is obvious that, the origin of data is very important
which is collected and send to data analysis

● So in this module we concentrate of the Sensor and The
Device Part as shown in the next slide.

Devices
The Data Flow

Today : Present
Total
Classes: 30
No of Days
Present: 30

Sensors and Devices

Devices
Introduction - What is it?

A thing made or adapted for a particular purpose,

especially a piece of mechanical or electronic equipment.
Source: Google

Thank You

Team Emertxe

Arduino
Programming Things

Introduction

Arduino
Introduction – What?

An open-source electronics platform based on

easy-to-use hardware and software
Source: www.arduino.cc

Arduino
Introduction – Why?

● Inexpensive

● Cross-platform

● Simple, clear programming environment

● Open source and extensible software

● Open source and extensible hardware

Arduino
Introduction – How do I use?

● Code online on the Arduino Web Editor

– To use the online IDE simply follow these instructions.
Remember that boards work out-of-the-box on the
Web Editor, no need to install anything.

● Install the Arduino Desktop IDE

https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-editor-on-various-platforms-4b3e4a
https://create.arduino.cc/editor

Arduino
Introduction – How do I use?

● Install the Arduino Desktop IDE

– To get step-by-step instructions select one of the
following link accordingly to your operating system.

● Windows
● Mac OS X
● Linux
● Portable IDE (Windows and Linux)

https://www.arduino.cc/en/Guide/Windows
https://www.arduino.cc/en/Guide/MacOSX
https://www.arduino.cc/en/Guide/Linux
https://www.arduino.cc/en/Guide/PortableIDE

Setup

Arduino
Setup – Workspace Creation

/

home

user

ECIP

4-ArduinoProgramming

Datasheets

References

Sketches

Sources

Schematics

user@user:~] cd # Make sure you are in home directory
user@user:~] pwd
/home/user
user@user:~] mkdir -p ECIP/4-ArduinoProgramming
user@user:~] cd ECIP/4-ArduinoProgramming
user@user:4-ArduinoProgramming]
user@user:4-ArduinoProgramming] mkdir Datasheets
user@user:4-ArduinoProgramming] mkdir References
user@user:4-ArduinoProgramming] mkdir Schematics
user@user:4-ArduinoProgramming] mkdir Sketches
user@user:4-ArduinoProgramming] mkdir Sources
user@user:4-ArduinoProgramming] ls
Datasheets References Schematics Sketches Sources
user@user:4-ArduinoProgramming]

Open your favorite terminal and
run the following commands

Arduino
Setup – Download

CLICK
ME

● Click the below icon and download the latest version of
IDE, Make sure you select the correct Linux Version based
on your system

● Assuming you have downloaded the file in the Download
directory, proceed with the installation steps mentioned
in the next slide

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

Arduino
Setup – Installation

user@user:4-ArduinoProgramming] ls
Datasheets References Schematics Sketches Sources
user@user:4-ArduinoProgramming] cd Sources
user@user:Sources] mv ~/Downloads/arduino-*.tar.xz .
user@user:Sources] tar xvf arduino-*.tar.xz
user@user:Sources] cd arduino-*
user@user:arduino-<version>] chmod +x install.sh
user@user:arduino-<version>] ./install.sh
Adding desktop shortcut, menu item and file associations for Arduino IDE... done!
user@user:arduino-<version>]

● In case if you want to uninstall!, you may follow the
below step

user@user:arduino-<version>] chmod +x uninstall.sh
user@user:arduino-<version>] ./uninstall.sh
Removing desktop shortcut and menu item for Arduino IDE... done!
user@user:arduino-<version>]

IDE Overview

Arduino
IDE

Menu Bar

Verify Sketch

Upload Sketch to
Board

New Sketch

Open Sketch

Save Sketch

Serial Monitor

Tab Functions

Editor

Output Window

Board / Port InfoCursor Position

Sketch Name with
Date

IDE Version

Arduino
Sketch - Default

All one time initialization goes
here. For example,
● Configuration of DDR register
● Serial port setup etc.,

The application code, which
should loop forever should be
put here

Arduino
Sketch – Save As

Arduino
Sketch – Save As

Arduino
Sketch – Save As

Saved Sketch as

Board Architecture

Arduino
Hardware Architecture

● There are different varieties of boards, modules and
shields available

● Can be used for different complexity levels like basic
sensor node with non OS firmware to an IoT gateway
based on embedded Linux

● Few types of boards and its architectures are mentioned
in next slides

Arduino
Hardware Architecture - UNO

ATMEGA328P

USB
Interface

GPIO

Arduino
Hardware Architecture – UNO - Board

Arduino
Hardware Architecture - TIAN

Atheros
AR9342

DDR2
64 MB

Wifi

USB 2.0

Ethernet
10/100/1000

eMMC
4 GB

SPI Flash
16 MB

SAMD21G18
Bluetooth

USB HUB

GPIO

DEBUG

Arduino
Hardware Architecture – TIAN - Board

Arduino
Hardware Architecture – Shield - Motor

Arduino
Hardware Architecture – Shield - Relay

Arduino
Hardware Architecture

● So as summary we lots of open source hardware option to
pick upon

● As part this module, we would be concentrating on
NodeMCU, based on ESP8266 Wi-Fi Module

The First Sketch

Arduino
The First Sketch

● Well, as general approach, write that first code
(irrespective of the hardware you work on), which gives
you the confidence that you are on the right path.

● So, identify the simplest possible interface which can be
made to work with lesser overhead, which helps us to
verify that our,

– Hardware is working
– Toolchain setup is working
– Connectivity between the host and target is established

and so on.

Arduino
The First Sketch

● It is good to know, what your target board is?, what it
contains? by its architecture

● Board architecture generally gives you overview about
your board and its peripheral interfaces

● In our case, as already mentioned we will be using
NodeMCU whose architecture is given in the next slide

Arduino
The First Sketch – NodeMCU - Architecture

USB
Interface

GPIOs

LED

SWITCH

ESP32

BLE Wi-Fi

Arduino
The First Sketch – NodeMCU – Module

Arduino
The First Sketch

Built-in LED

● From the NodeMCU’s
architecture, we come to
know about a built-in LED!, so
why not start with it?

● Well, if you have a bit of
microcontroller programming
experience, you would
certainly ask a question on
where and how the LED is
connected?

● The board schematic has this
answer.

Arduino
The First Sketch – NodeMCU – Schematic (Part)

LED1

GPIO2

VDD3V3

● The LED is connected to
GPIO2

● Its a sinking circuit (O to
glow)

● With these basic information,
it should possible to write our
first sketch

● Please refer the next slide to
proceed further

Arduino
The First Sketch – I/O Configuration

● Almost all the modern controllers have multiple mode on
a port pin by design

● We need to set the right mode before we can write our
application!

● The LED is connected at GPIO2 which has to be set as
Output Pin

● Would like to recall that, The Arduino platform is very
popular because of its rich library functions, which make
it easy to program embedded devices

● So we need the right set of libraries configured in our IDE
for the target board we are using

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino

Arduino
The First Sketch – Libraries

ECIP/4-ArduinoProgramming/Sketches

https://dl.espressif.com/dl/package_esp32_index.json

https://dl.espressif.com/dl/package_esp32_index.json

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

Arduino
The First Sketch – Libraries

● If you have followed all the steps upto the previous slide
then, the library for ESP32 would have been installed

● The next step would be selecting your target board

● Make sure you have connected the Target board before
proceeding further

● Save the existing sketch as led_heartbeat (You may the
follow the steps given in IDE introduction)

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Host and Target Interface

Arduino
The First Sketch – Coding

● Now that everything is ready let’s move toward
programming the target board

● From all the information we have in previous slides, we
can use the LED blinky example from the arduino website
as is!!

● Please refer the next slide

Arduino
The First Sketch – Code

Arduino
The First Sketch – Compile

Arduino
The First Sketch – Compile

Arduino
The First Sketch – Compile

Arduino
The First Sketch – Upload

Arduino
The First Sketch – Upload

Arduino
The First Sketch – Upload

Arduino
The First Sketch – Output

Blinking LED

Arduino
The First Sketch – Summary

● So from our first sketch we come to know that there are
some built-in functions or classes to be used!

● The next topic covers some of the most commonly used
functions or classes in Arduino

Thank You

Team Emertxe

Arduino
Classes and Functions

Classes

Arduino
Class – What?

A set or category of things having some property or attribute in

common and differentiated from others by kind, type, or quality.
Source: google

Template definition of the methods and variables

in a particular kind of object
Source: google

Arduino
Class – Why?

● A technique which helps to describe the object
completely from properties to its implementation

● Acts as blue print, which helps us to create objects of the
same type!.

● What do you understand from the image put in the next
slide?

Arduino
Class – Why?

Arduino
Class – Why?

● What is to be understood here is the blueprint of bicycle
will always be same, like its going to have 2 tiers, a seat,
a handle etc.,

● We may create different types of bicycles with a defined
class

Arduino
Class – Where?

● Since Arduino is a open source platform, there many
classes available to use.

● More information regarding these function can be
obtained in link given below

https://www.arduino.cc/reference/en/#functions

https://www.arduino.cc/reference/en/#functions

Communication

Arduino
Classes – Communication – Serial.begin()

Description Sets the data rate in bits per second (baud) for serial data
transmission

Syntax Serial.begin(speed)
Serial.begin(speed, config)

Parameters speed: in bits per second (baud) – long
config: sets data, parity, and stop bits. Some valid values are

SERIAL_5N1
SERIAL_6N1
SERIAL_7N1
SERIAL_8N1 (the default)

Return Nothing

https://www.arduino.cc/reference/en/language/functions/communication/serial/begin/

Arduino
Classes – Communication - Serial.print()

Description Prints data to the serial port as human-readable ASCII text. This
command can take many forms. Numbers are printed using an
ASCII character for each digit.

Syntax Serial.print(val)
Serial.print(val, format)

Parameters val: the value to print - any data type
format: specifies the number base (for integral data types) or
number of decimal places (for floating point types)

Return size_t: print() returns the number of bytes written, though
reading that number is optional.

Example Serial.print(78) gives "78"
Serial.print(1.23456) gives "1.23"
Serial.print('N') gives "N"
Serial.print("Hello world.") gives "Hello world."
Serial.print(78, BIN) gives "1001110" where BIN
can be replaced with OCT, DEC or HEX
Serial.print(1.23456, 0) gives "1"
Serial.print(1.23456, 2) gives "1.23"

https://www.arduino.cc/reference/en/language/functions/communication/serial/print/

Arduino
Classes – Communication - Serial.println()

Description Prints data to the serial port as human-readable ASCII text
followed by a carriage return character (ASCII 13, or '\r') and a
newline character (ASCII 10, or '\n'). This command takes the same
forms as Serial.print().

Syntax Serial.println(val)
Serial.println(val, format)

Parameters val: the value to print - any data type
format: specifies the number base (for integral data types) or
number of decimal places (for floating point types)

Return size_t: println() returns the number of bytes written,
though reading that number is optional.

https://www.arduino.cc/reference/en/language/functions/communication/serial/println/

Arduino
Classes – Communication - Serial.write()

Description Writes binary data to the serial port. This data is sent as a byte or
series of bytes; to send the characters representing the digits of a
number use the print() function instead.

Syntax Serial.write(val)
Serial.write(str)
Serial.write(buf, len)

Parameters val: a value to send as a single byte
str: a string to send as a series of bytes
buf: an array to send as a series of bytes

Return size_t: write() will return the number of bytes written,
though reading that number is optional

https://www.arduino.cc/reference/en/language/functions/communication/serial/write/

Arduino
Classes – Communication - Serial.read()

Description Reads incoming serial data. read() inherits from the Stream utility
class.

Syntax Serial.read()

Parameters Nothing

Return The first byte of incoming serial data available (or -1 if no data is
available) - int.

https://www.arduino.cc/reference/en/language/functions/communication/serial/read/

Arduino
Classes – Communication - Serial

Want to more on Serial functions?
Click the below link

https://www.arduino.cc/reference/en/language/functions/communication/serial/

Digital I/O

Arduino
Classes – Digital I/O - pinMode()

Description Configures the specified pin to behave either as an input or an
output

Syntax pinMode(pin, mode)

Parameters pin: the number of the pin whose mode you wish to set
mode: INPUT, OUTPUT, or INPUT_PULLUP. (see the (digital pins)
page for a more complete description of the functionality.)

Return Nothing

Notes and
Warnings

The analog input pins can be used as digital pins, referred to as
A0, A1, etc.

https://www.arduino.cc/reference/en/language/functions/digital-io/pinmode/

Arduino
Classes – Digital I/O - digitalWrite()

Description Write a HIGH or a LOW value to a digital pin.

Syntax digitalWrite(pin, value)

Parameters pin: the pin number
value: HIGH or LOW

Return Nothing

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/

Arduino
Classes – Digital I/O - digitalRead()

Description Reads the value from a specified digital pin, either HIGH or LOW.

Syntax digitalRead(pin)

Parameters pin: the number of the digital pin you want to read

Return HIGH or LOW

https://www.arduino.cc/reference/en/language/functions/digital-io/digitalwrite/

Time

Arduino
Classes – Time - delay()

Description Pauses the program for the amount of time (in milliseconds)
specified as parameter. (There are 1000 milliseconds in a second.)

Syntax delay(ms)

Parameters ms: the number of milliseconds to pause (unsigned long)

Return Nothing

https://www.arduino.cc/reference/en/language/functions/time/delay/

Arduino
Classes – Time - delayMicroseconds()

Description Pauses the program for the amount of time (in microseconds)
specified as parameter. There are a thousand microseconds in a
millisecond, and a million microseconds in a second.

Currently, the largest value that will produce an accurate delay is
16383

Syntax delayMicroseconds(us)

Parameters us: the number of microseconds to pause (unsigned int)

Return Nothing

https://www.arduino.cc/reference/en/language/functions/time/delaymicroseconds/

Arduino
Classes – Time - micros()

Description Returns the number of microseconds since the Arduino board
began running the current program. This number will overflow (go
back to zero), after approximately 70 minutes.

Syntax time = micros()

Parameters Nothing

Return Returns the number of microseconds since the Arduino board
began running the current program.(unsigned long)

https://www.arduino.cc/reference/en/language/functions/time/micros/

Arduino
Classes – Time - millis()

Description Returns the number of milliseconds since the Arduino board began
running the current program. This number will overflow (go back
to zero), after approximately 50 days.

Syntax time = millis()

Parameters Nothing

Return Number of milliseconds since the program started (unsigned long)

Notes and
Warnings

Please note that the return value for millis() is an unsigned long,
logic errors may occur if a programmer tries to do arithmetic with
smaller data types such as int’s. Even signed long may encounter
errors as its maximum value is half that of its unsigned
counterpart.

https://www.arduino.cc/reference/en/language/functions/time/millis/

Analog I/O

Arduino
Classes – Analog I/O - analogRead()

Description Reads the value from the specified analog pin. The number of
channels depends on the board used, assuming 10-bit analog to
digital converter, mapping voltages between 0 and 5 volts into
integer values between 0 and 1023. This yields a resolution
between readings of: 5 volts / 1024 units or, .0049 volts (4.9 mV)
per unit. The input range and resolution can be changed using
analogReference().

It takes about 100 microseconds to read an analog input,

Syntax val = analogRead(pin)

Parameters pin: the number of the analog input pin to read from

Return int (0 to 1023) Depends on the board

Notes and
Warnings

If the analog input pin is not connected to anything, the value
returned by analogRead() will fluctuate based on a number of
factors (e.g. the values of the other analog inputs, how close your
hand is to the board, etc.).

https://www.arduino.cc/reference/en/language/functions/analog-io/analogread/

Arduino
Classes – Analog I/O - analogWrite()

Description Writes an analog value (PWM wave) to a pin. Can be used to light a
LED at varying brightnesses or drive a motor at various speeds

Syntax analogWrite(pin, value)

Parameters pin: the pin to write to. Allowed data types: int.
value: the duty cycle: between 0 (always off) and 255 (always
on). Allowed data types: int

Return Nothing

Notes and
Warnings

Please click on the below link icon for more info

https://www.arduino.cc/reference/en/language/functions/analog-io/analogwrite/

Arduino
Classes – Analog I/O - analogWrite()

Description Configures the reference voltage used for analog input (i.e. the
value used as the top of the input range)

Syntax analogReference(type)

Parameters type: which type of reference to use (see list of options in the
description).

Return Nothing

Notes and
Warnings

Please click on the below link icon for more info

https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/

Thank You

Team Emertxe

Arduino
Peripherals and Interfaces

Interfaces

Arduino
Interface – What?

A shared boundary across which two or more separate

components of a computer system exchange information
Source: wiki

Arduino
Interface - Pinout

EN

GPIO36

GPIO39

GPIO34

GPIO35

GPIO32

GPIO33

GPIO25

GPIO26

GPIO27

GPIO14

GPIO12

GPIO13

GND

VIN

GPIO23

GPIO22

GPIO1

GPIO0

GPIO21

GPIO19

GPIO18

GPIO5

GPIO17

GPIO16

GPIO4

GPIO2

GPIO15

GND

3.3V

GPIO0GPIO3

I2C_SDA

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

AD1_C4

AD1_C5

AD2_C8

AD2_C9

AD2_C7

AD2_C6

AD2_C5

AD2_C4

TOUCH9

TOUCH8

DAC_1

DAC_2

TOUCH7

TOUCH6

TOUCH5

TOUCH4

AD1_C3

AD1_C6

AD1_C7

GPIO39

GPIO34

GPIO35

AD1_C0

AD2_C0

AD2_C2

AD2_C3

TOUCH0

TOUCH2

TOUCH3

SENS_VN

SENS_VP

HSPI_CK

HSPI_Q

HSPI_D

HSPI_HD

HSPI_WP

HSPI_C0

U0_TXD

GPIO0GPIO0U0_RXD

U0_CTS

32K_XP

32K_XN

U0_RTS

I2C_SCL

U2_TXD

GPIO0GPIO0U2_RXD

Light Emitting Diodes

Arduino
Interface - LEDs

● Simplest device used in most on the embedded
applications as feedback

● Works just like diodes

● Low energy consumption, longer life, smaller size, faster
switching make it usable in wide application fields like

– Home lighting,
– Remote Controls, Surveillance,
– Displays and many more!!

Arduino
Interface - LEDs

D1

GPIO12

GND

R1
V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

Tactile Switch

Arduino
Interface - Tactile Switches

● Provides simple and cheap interface

● Comes in different shapes and sizes

● Preferable if the no of user inputs are less

● Some common application of tactile keys are

– HMI
– Mobile Phones
– Computer Mouse etc,.

Arduino
Interface - Tactile Switches

SW1

R2

R1
GND

3.3V

GPIO15

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

SW2
R3

GPIO16

Analog Input

Arduino
Interface – Analog Inputs

● Very important peripheral in embedded systems for real
time activities

● The controller understands only digital signals, so an real
time linear signals have to be converted into digital form

● Multiplexed with GPIO

● Comes with different architecture, SAR is most commonly
used

Arduino
Interface - Analog Inputs - Potentiometer

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

GND

3.3V

AD2_C0 R1

Interrupts

Arduino
Peripheral – Interrupt - Contents

● Basic Concepts

● Interrupt Source

● Interrupt Classification

● Interrupt Handling

file:///home/adil/Desktop/Arduino/1-Slides/%23basic_concepts
file:///home/adil/Desktop/Arduino/1-Slides/%23int_sources
file:///home/adil/Desktop/Arduino/1-Slides/%23int_handling

Arduino
Peripheral – Interrupt – Basic Concept

● An interrupt is a communication process set up in a
microprocessor or microcontroller in which:

– An internal or external device requests the MPU to stop the
processing

– The MPU acknowledges the request
– Attends to the request
– Goes back to processing where it was interrupted

● Polling

file:///home/adil/Desktop/Arduino/1-Slides/%23interrupt_vs_polling

Arduino
Peripheral – Interrupt – Vs Polling

● Events Detection

● Response

● Power Management

Arduino
Peripheral – Interrupt – Sources

● Timers

● External

● Peripherals

Interrupts

Hardware Software

Non Maskable Maskable

External Internal

Arduino
Peripheral – Interrupt – Classifications

Arduino
Peripheral – Interrupt – Handling

0x0000
0x0001
0x0002

i
i + 1

Super Loop Interrupt
Handler

Interrupt
Occurs Here

Arduino
Peripheral – Interrupt – Handling - ISR

● Similar to a subroutine

● When an interrupt occurs, the MPU:
– Completes the instruction being executed

– Disables global interrupt enable

– Places the address from the program counter on the stack

● Attends to the request of an interrupting source
– Clears the interrupt flag

– Should save register contents that may be affected by the code in the
ISR

– Must be terminated with the instruction RETFIE

● Return from interrupt

Arduino
Peripheral – Interrupt – Handling - ISR

● What / What Not

Arduino
Peripheral – Interrupt – Handling - ISR

● Latency is determined by:

– Instruction time (how long is the longest)
– How much of the context must be saved
– How much of the context must be restored
– The effort to implement priority scheme
– Time spend executing protected code

Arduino
Peripheral – Interrupt – Interface

SW1

R2

R1
GND

3.3V

GPIO15

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

SW2
R3

GPIO16

Timers

Arduino
Peripherals - Timers

● Resolution  Register Width
● Tick  Up Count or Down Count

● Quantum  System Clock settings
● Scaling  Pre or Post

● Modes

– Counter
– PWM or Pulse Generator
– PW or PP Measurement etc.,

Arduino
Peripherals – Timers - Example

● Requirement – 5 pulses of 8 µsecs

● Resolution – 8 Bit

● Quantum – 1 µsecs

● General

file:///home/adil/Desktop/Arduino/1-Slides/%23timer_example_2

Arduino
Peripherals – Timers - Example

Timer Register

Overflows

28μs 20μs 12μs 4μs

Relay

Arduino
Interface - Relay

● Most commonly used electromechanical switch

● Uses a electromagnet to operate

● Used to control high power devices using low power
signal

● Provides isolation between the control and controlled
circuit

– Home Automation,
– Automotive applications
– Industrial application and many more !!

Arduino
Interface - Relay

Arduino
Interface - Relay

R1

GND

VIN

GPIO17

NO

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

NC
C

Q1

K1

D1

VIN

CLCD

Arduino
Interface - CLCD

● Most commonly used
display ASCII
characters

● Some customization in
symbols possible

● Communication Modes

– 8 Bit Mode

– 4 Bit Mode

Arduino
Interface - CLCD

D4
D5
D6
D7
EN

R/W
RS

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

4
5
6
7
14
13D

CLK

OE

HCF4094

U1

GPIO19

GPIO18

GPIO5

VIN

GND

3.3V

Q1
Q2
Q3
Q4
Q5
Q62

3

15

8

STR

VDD

VIN

16

GND

R1

Sensors

DHT11

Arduino
Interface – Sensors - DHT11

● A cheap and very simple sensor to measure Temperature
and Humidity

● It uses a capacitive humidity sensor and a thermistor to
measure the surrounding air, and sends digital signal on
the data pin

Arduino
Interface - Sensors - DHT11

V
I
N
G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3
D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8
D
1
9

D
2
1

R
X
0

T
X
0
D
2
2

3
V
3
G
N
D

D
2
3

V
INEN E
N

B
O

O
T

GND

3.3V

GPIO16

U1

1
-

V
cc

2
–

D
at

a
3

–
N

C
4

–
G

nd

DHT11

R1

Thank You

Team Emertxe

Communication Protocols I
Wired

Communication Protocols I

● Introduction
● UART
● SPI
● I²C
● CAN

file:///home/adil/Desktop/Arduino/1-Slides/%23uart

Introduction

Introduction

● What do mean by Communication?
● Mode of Communications
● Type of Communications
● Why Protocols?

file:///home/adil/Desktop/Arduino/1-Slides/%23modes_of_communication

UART

UART

● Introduction
● Interface
● Hardware Configurations
● Frame Format

UART
Introduction

● Asynchronous

● Duplex - Any

● Master / Slave

UART
Interface

● RX

● TX

UART
Hardware Configuration

TX

RX

RX

TX

Device 1 Device 2

UART
Frame Format

S D0 D1 D2 D3 D4 D5 D6 D7 P ST

● Data part can be 5 to 9 bits

● Stop could be 2 bits

● Parity could be 0 or 1 bit

UART
Baud Rate

● Number of symbols per second (In this context the a
symbol is a bit)

● So, sometimes referred as Bit Rate (No of bits per second)
● The frequency of the data transfer

● Both transmitter and receiver has to agree upon a
common frequency for data integrity

UART
Baud Rate

Transmitter Sample Frequency

Receiver Sample Frequency

S D0 D1 D2 D3 D4 D5 D6 D7 P ST

S D0 D2 D3 D4D1Device 2

Device 1

UART
Baud Rate vs Bit Rate

100 200 300 400 500 600 700 800 900 1000

1 1 1 1 1

0 0 0 0 0

10

11 11 11 11

10

01 01

0000

milliseconds

Serial Peripheral Interface

Serial Peripheral Interface

● Introduction
● Interface
● Hardware Configurations
● Data Transmission

– Data Validity

SPI
Introduction

● Synchronous

● Full Duplex

● Master / Slave

SPI
Interface

● SCLK

● MOSI

● MISO

● nSS

SPI
Hardware Configuration

SCLK

MOSI

MISO

SS1

SCLK

MOSI

MISO

SS

Master Slave 1

Single Master and Single Slave

SPI
Hardware Configuration

SCLK

MOSI

MISO

SS1

SCLK

MOSI

MISO

SS

Master Slave 1

Single Master and Three Slaves

SCLK

MOSI

MISO

SS

Slave
2

SCLK

MOSI

MISO

SS

Slave 3

SS2

SS2

SPI
Hardware Configuration

SCLK

MOSI

MISO

SS1

SCLK

MOSI

MISO

SS

Master Slave 1

Single Master and Three Daisy Chained Slaves

SCLK

MOSI

MISO

SS

Slave
2

SCLK

MOSI

MISO

SS

Slave 3

SPI
Data Transmission

1 0 1 0 0 0 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

10 1 0 0 0 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 01 0 0 0 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 0 10 0 0 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 0 1 00 0 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 0 1 0 00 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 0 1 0 0 01 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 0 1 0 0 0 11

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Transmission

1 0 1 0 0 0 1 1

CONTROL

0 0 1 1 1 0 1 1

CONTROL

MASTER SLAVE

MOSI SDI

MISO SDO

SCLK SCK

SS CS

SPI
Data Validity

SCK

SDI/O

Data Write

Data Read

Inter Integrated Circuits

● Introduction

● Bus Features

● The Protocol

● Bus Speeds

Inter Integrated Circuits

● Synchronous
● Half Duplex
● Multi Master / Slave

I2C
Introduction

● Two Line Interface
● Software Addressable
● Multi Master with CD
● Serial, 8 bit Oriented, Bidirectional with 4 Modes
● On Chip Filtering

I2C
Bus Features

● Example
● Signals
● A Complete Data Transfer

I2C
Protocol

I2C
Example

LCD Driver EEPROM RTC

Temperature
Sensor

ADC

Microcontroller
A

Microcontroller
B

DATA

CLOCK

● Two-wired Interface

– SDA
– SCL

● Wired-AND
● Conditions and Data Validity
● Transmission

I2C
Signals

I2C
Signals – Wired-AND

SCL

SDA

VDD

SCLN1
OUT

SCL
IN

DATA1
OUT

DATA
IN

SCLN2
OUT

SCL
IN

DATA2
OUT

DATA
IN

DEVICE1 DEVICE2

I2C
Signals – Conditions and Data Validity

Data Write

Data Read

Conditions

SCL

SDA

S P

I2C
Signals – Transmission

● Data on SDA
● Clocking on SCL
● Clock Synchronization
● Data Arbitration

file:///home/adil/Desktop/Arduino/1-Slides/%23i2c_clocking_on_scl

I2C
Signals – Data on SDA

SCL

SDA -

S

1-8 91-8 9

D7 - D0

D7 - D0

SDA Actual
D7 - D0 D7 - D0

 T / R

SDA - R / T

P
or
Sr

I2C
Signals – Clocking on SCL

SCL

SDA

S

1-8 91-8 9

Say, a byte is complete
and an interrupt

is raised with slave!
Clock

Stretching

D7 - D0

ACK from
Slave

ACK from
Receiver

P

Sr
or

I2C
Signals – Clock Synchronization

SCL

SCL2

SCL1

High Wait State

High Period of SCL

I2C
Signals – Data Arbitration

SDA1

SCL

SDA2

SDA

I2C
A Complete Data Transfer

SCL

SDA

ADDRESS R/W ACK

1 - 7 8 9

DATA ACK

1 - 8 9

DATA ACK

1 - 8 9

S P

● Bidirectional Bus

– Standard Mode - 100 Kbit/s
– Fast Mode - 400 Kbits/s
– Fast Mode Plus - 1 Mbits/s
– High Speed Mode - 3.4 Mbits/s

● Unidirectional Bus

– Ultra Fast Mode – 5 Mbits/s
● Uses Push-Pull Drivers (No Pullups)

I2C
Bus Speeds

Controller Area Network

● Introduction to CAN

● Basic Concepts

● Message Transfer

● Error Handling

● Fault Confinement

Controller Area Network

● Asynchronous
● Half Duplex
● Multi Master / Slave

CAN
Introduction

● Example

● Versions

● Absence of node addressing
– Message identifier specifies contents and priority

– Lowest message identifier has highest priority

● Non-destructive arbitration system by CSMA with collision
detection

● Simple Transmission Medium
– Twisted pair – CAN H and CAN L

● Properties

● Layered Architecture

CAN
Basic Concepts

CAN
Basic Concepts - Example

Node 1

Controller

CAN Controller

CAN Transceiver

Node 2

Controller

CAN Controller

CAN Transceiver

Node N

Controller

CAN Controller

CAN Transceiver

CAN
Basic Concepts - Versions

NOMENCLATURE STANDARD MAX SIGNALING RATE IDENTIFIER

Low Speed CAN ISO 11519 125 kbps 11 bit

CAN 2.0A ISO 11898:1993 1 Mbps 11 bit

CAN 2.0B ISO 11898:1995 1 Mbps 29 bit

● Prioritization of Messages

● Guarantee of Latency Times

● Configuration Flexibility

● Multicast Reception with Time Synchronization

● System wide Data Consistency

● Multi master

● Error Detection and Error Signaling

● Automatic Retransmission

● Distinction between temporary errors and permanent failures
of nodes and autonomous switching off of defect nodes

CAN
Basic Concepts - Properties

CAN
Basic Concepts - Layered Architecture

7

6

5

4

3

2

Application

Presentation

Session

Transport

Network

Data Link

Physical1

OSI Model

Application

Presentation

Session

Transport

Network

Data Link

Physical

CAN
Basic Concepts - Layered Architecture

7

6

5

4

3

2

Application

Presentation

Session

Transport

Network

Data Link

Physical1

OSI Model

LLC:
Acceptance Filtering
Overload Notifications
Recovery Managment

MAC:
Data En / Decapsulation
Frame Coding (Stuffing,
Destuffing)
Medium Access Managment
Error Detection
Error Signalling
Acknowledgement
Serialization / Deserialization

Bit Encoding / Decoding
Bit Timing
Synchronization

Driver / Receiver Characteristics

CAN
Message Transfer

● Frame Formats

– Standard Frame - 11 bits Identifiers
– Extended Frame - 29 bits Identifiers

● Frame Types

– Data Frame
– Remote Frame
– Error Frame
– Overload Frame

● Frame Fields

file:///home/adil/Desktop/Arduino/1-Slides/%23can_frame_formats

CAN
Message Transfer – Data Frame

● A data frame consists of seven fields: start-of-frame, arbitration,
control, data, CRC, ACK, and end-of-frame.

CAN
Message Transfer – Remote Frame

● Used by a node to request other nodes to send certain
type of messages

● Has six fields as shown in above figure

– These fields are identical to those of a data frame
with the exception that the RTR bit in the arbitration
field is recessive in the remote frame.

CAN
Message Transfer – Error Frame

● This frame consists of two fields.
– The first field is given by the superposition of error flags

contributed from different nodes.
– The second field is the error delimiter.

● Error flag can be either active-error flag or passive-error flag.
– Active error flag consists of six consecutive dominant bits.
– Passive error flag consists of six consecutive recessive bits.

● The error delimiter consists of eight recessive bits.

CAN
Message Transfer – Overload Frame

● Consists of two bit fields: overload flag and overload delimiter
● Three different overload conditions lead to the transmission of the

overload frame:
– Internal conditions of a receiver require a delay of the next data frame or

remote frame.
– At least one node detects a dominant bit during intermission.
– A CAN node samples a dominant bit at the eighth bit (i.e., the last bit) of an

error delimiter or overload delimiter.
● Format of the overload frame is shown in above fig
● The overload flag consists of six dominant bits.
● The overload delimiter consists of eight recessive bits.

● Control Field
● Arbitration Field
● Data Field
● CRC Field
● ACK Field

CAN
Message Transfer – Frame Fields

● The first bit is IDE bit for the standard format but is
used as reserved bit r1 in extended format.

● r0 is reserved bit.
● DLC3…DLC0 stands for data length and can be from

0000 (0) to 1000 (8).

CAN
Frame Fields – Control Field

● The identifier of the standard format corresponds to the base ID in the
extended format.

● The RTR bit is the remote transmission request and must be 0 in a data
frame.

● The SRR bit is the substitute remote request and is recessive.
● The IDE field indicates whether the identifier is extended and should

be recessive in the extended format.
● The extended format also contains the 18-bit extended identifier.

CAN
Frame Fields – Arbitration Field

● May contain 0 to 8 bytes of data

CAN
Frame Fields – Data Field

● It contains the 16-bit CRC sequence including CRC
delimiter.

● The CRC delimiter is a single recessive bit.

CAN
Frame Fields – CRC Field

● Consists of two bits
● The first bit is the acknowledgement bit.
● This bit is set to recessive by the transmitter,

but will be reset to dominant if a receiver
acknowledges the data frame.

● The second bit is the ACK delimiter and is
recessive.

CAN
Frame Fields – Ack Field

CAN
Error Handling

● Error Detection

– Bit Error
– Stuff Error

● Error Signaling

– CRC Error
– Form Error
– Acknowledgment Error

CAN
Fault Confinement

● Counters

– Transmit Error Counter & Receive Error Counter

Thank You

Team Emertxe

Communication Protocols II
Wireless

Communication Protocols II
Introduction – Wireless - What?

● Transmission of signals (Voice, Video, Data etc..) using
Electromagnetic Waves (RF) in open space

● The transmitter and receiver will have a defined channel
to carry information across

● Multiple channels can co-exist with a fixed frequency
bandwidth & capacity (bit rate) to transmit information
in parallel and independently

Communication Protocols II
Introduction – Wireless - Why?

● Eliminates the need of messy and costly wires.

● Can communicate with devices where wiring is infeasible

● Global coverage

– Buildings and Compounds
– Towns and Cites

● Freedom to communicate on the move

Communication Protocols II
Introduction – Wireless – General Frequencies

● FM Radio - 88 MHz

● TV Broadcast - 200 MHz

● Mobiles - 900 MHz

● GPS - 1.2 GHz

● PCS Phones - 1.8 GHz

● Wi-Fi - 2.4 / 5 GHz

● Bluetooth - 2.4 / 5 GHz

Communication Protocols II
Introduction – Wireless – How does it happen?

Communication Protocols II
Introduction – Wireless – Types

● Radio: Easily generated, Omnidirectional , travel long distance , easily
penetrates buildings.

– Issues: Frequency dependent , relatively low bandwidth for data
communication , tightly licensed by government.

● Microwave: Widely used for long distance communication , relatively
inexpensive.

– Issues: don’t pass through buildings , weather and frequency dependent.
● IR and MM Waves: Widely used for short range communication,used for indoor

wireless LANs, not for outdoors.

– Issues: unable to pass through solid objects
● Light Waves: Unguided optical signal such as laser , unidirectional , easy to

install , no license required.

– Issues: Unable to penetrate rain or thick fog , laser beam can be easily
diverted by air.

Communication Protocols II
Introduction – Wireless – Technologies

● Radio and Television Broadcasting

● Radar Communication

● Satellite communication

● Cellular Communication

● Global Positioning System

● Wi-Fi

● Bluetooth

● Radio Frequency Identification

Contents

Contents

● Wi-Fi
● Bluetooth

Wi-Fi

Communication Protocols II
Wi-Fi – Introduction

● WLAN based on IEEE 802.11 Standard

● IEEE generally build standards and thus does not test
devices for compliance

● To fill this gap an alliance of different groups of
companies was created named “Wi-Fi Alliance”

● Wi-Fi is trademark of Wi-Fi Alliance (NPO), help in
conforming to certain standards of interoperability,

The logo symbolizes this

Yin Yang

Communication Protocols II
Wi-Fi – Introduction

● Phil Belanger, a founding member of the Wi-Fi Alliance
who presided over the selection of the name "Wi-Fi"
writes:

– Wi-Fi doesn't stand for anything.
– It is not an acronym. There is no meaning.

● The above point should remove the misconception that
the WiFi stands for Wifi Fidelity

Communication Protocols II
Wi-Fi – IEEE Standard

IEEE 802.11 PHY Standards

Release
Date

Standard Frequency
Band (GHz)

Bandwidth
(MHz)

Modulation Antenna
Technologies

Maximum
Data Rate

Range
(Mts)

1997 802.11 2.4 GHz 20 MHz DSSS, FHSS SISO 2 Mbps 20

1999 802.11b 2.4 GHz 20 MHz DSSS SISO 11 Mbps 35

1999 802.11a 5 GHz 20 MHz OFDM SISO 54 Mbps 35

2003 802.11g 2.4 GHz 20 MHz DSSS, OFDM SISO 542 Mbps 70

2009 802.11n 2.4, 5 GHz 20, 40 MHz OFDM MIMO, upto 4
spatial streams

640 Mbps 70

2013 802.11ac 5 GHz 40, 80, 160 MHz OFDM MIMO, MU-MIMO
upto 8 spatial

streams

6.93 Gbps 35

2013 802.11ad 60 GHz 2.16 GHz SC, OFDM 10 x10 MIMO 6.76 Gbps 10

2013 802.11af 54-740 MHz 6, 7, 8 MHz SC, OFDM - 26.7 Mbps > 1 K

2016 802.11ah 900 Mhz 1, 2, 3, 4, 5 MHz SC, OFDM - 40 Mbps 1 K

Communication Protocols II
Wi-Fi – Components

STA 1

STA 2

STA 3

RouterModemInternet

AP

Communication Protocols II
Wi-Fi – Basic Service Set (BSS)

STA 1

STA 2

CF / AP

Rough coverage area influenced by
different environmental factors!

Communication Protocols II
Wi-Fi – Basic Service Set (BSS)

● All wireless devices that join a Wi-Fi network, are called
as wireless stations

● When two or more stations are wirelessly connected they
form a Basic Service Set

● A BSS is a set of STAs controlled by a single coordination
function (CF). The CF is a logical function that
determines when a STA transmits and when it receives.

● Not all STAs in a BSS can necessarily communicate
directly. In the next diagram shown, STA 1 and 3 are
mutually out of range, thus require use of STA 2 to relay
messages.

Communication Protocols II
Wi-Fi – Basic Service Set (BSS)

STA 1

STA 2

CF / AP

Communication Protocols II
Wi-Fi – Operating Modes

● IEEE 802.11 standard: infrastructure mode and ad-hoc
mode. Each one makes use of the BSS, but they yield
different network topologies

– Ad-hoc
– Infrastructure

Communication Protocols II
Wi-Fi – Operating Modes – Ad-hoc

● An independent BSS (IBSS) is the simplest type of 802.11
network. Wireless stations communicate directly with one
another forming peer-to-peer model

● A BSS operating in ad-hoc mode is isolated. There is no
connection to other Wi-Fi networks or to any wired LANs.

Node 2Node 1

Communication Protocols II
Wi-Fi – Operating Modes – Infrastructure

● Requires a BSS containing one wireless access point (AP)

● An AP is a STA with additional functionality. A major role for
an AP is to extend access to wired networks for the clients
of a wireless network

● All wireless devices trying to join the BSS must associate
with the AP. An AP provides access to its associated STAs to
what is called the distribution system (DS). The DS is an
architectural component that allows communication among
Aps

● The IEEE 802.11 specification does not define any physical
characteristics or physical implementations for the DS.
Instead, it defines services that the DS must provide

Communication Protocols II
Wi-Fi – Operating Modes – Infrastructure

STA 1

STA 2

STA3 / AP

STA 6

STA 5

STA4 / AP

Distribution System

BSS1 BSS2

Communication Protocols II
Wi-Fi – Operating Modes – Infrastructure - DS

● Physical connection with Coaxial cabling or fiber optic
cabling

● Logically different from the wireless medium
● Addresses used on the DS medium do not have to be the

same as used in AP

● This setup is similar to the host/hub model (or “star
topology”) used frequently in wired networks.

Communication Protocols II
Wi-Fi – ESS

● A common distribution system (DS) and two or more BSSs
create what is called an extended service set (ESS)

● An ESS is a Wi-Fi network of arbitrary size and complexity
● The DS enables mobility in a Wi-Fi network by a method

of tracking the physical location of STAs, thus ensuring
that frames are delivered to the AP associated with the
destination STA.

– Mobility: move anywhere within the coverage area of the
ESS and keep an uninterrupted connection

Communication Protocols II
Wi-Fi – ESS

● The network name, or SSID, must be the same for all APs
participating in the same ESS.

STA 1

STA 2

STA3 / AP

Distribution System

BSS1

STA 4

STA 5
STA6 / AP

BSS2

STA 9

STA 8

STA7 / AP

BSS3

Communication Protocols II
Wi-Fi – Layers

7

6

5

4

3

2

Application

Presentation

Session

Transport

Network

Data Link

Physical1

OSI Model

LLC:
Acceptance Filtering
Overload Notifications
Recovery Engagement

MAC:
Data En / Decapsulation
Frame Coding (Stuffing,
Destuffing)
Medium Access Management
Error Detection
Error Signaling
Acknowledgment
Serialization / Deserialization

Bit Encoding / Decoding
Bit Timing
Synchronization

Driver / Receiver Characteristics

IEEE 802.2

IEEE 802.3

IEEE 802.11

Communication Protocols II
Wi-Fi – Layers - PHY

● Responsible for such things as modulation methods, encoding
schemes and the actual transmission of radio signals through
space.

● PHY implementations operate in specific bands. A band
defines the frequencies allocated for particular applications.

● Many Wi-Fi devices are designed for use in the Industrial,
Scientific and Medical (ISM) band.

● The ISM band is for license-free devices; regulatory
requirements demand that license-free devices use spread-
spectrum technology. Direct sequence spread spectrum
(DSSS) PHYs are the most widely deployed at this point in
time.

Communication Protocols II
Wi-Fi – Layers - MAC

● A sublayer of the data link layer (DLL). It rides above the
physical layer, controlling transmission of data and
providing interaction with a wired backbone, if one
exists.

● The MAC layer also provides services related to the radio
and mobility management.

● To move data packets across a shared channel, the MAC
layer uses CSMA/CA (Carrier Sense Multiple Access /
Collision Avoidance), which is very similar to the strategy
used in 802.3 MAC layers: CSMA / CD (Collision
Detection).

Communication Protocols II
Wi-Fi – Layers - MAC

● CSMA / CA and CSMA / CD are both peer-to-peer
protocols, but unlike CSMA / CD, which deals with
transmissions after a collision has occurred, CSMA / CA
acts to prevent collisions before they happen.

● The 802.11 MAC layer is required to appear to a logical
link control (LLC) layer as an IEEE 802 LAN, thus Wi-Fi and
Ethernet both use MAC addresses in the same format,
i.e., 6 octets that are globally unique.

Communication Protocols II
Wi-Fi – IEEE 802.11 Services

● The IEEE 802.11 standard does not define any specific
implementations. Instead, nine services are specified
that all implementations must provide.

Communication Protocols II
Wi-Fi – IEEE 802.11 Services

● Station Services

– Authentication
● A wireless station needs to be identified before it can access network

services. This process is called authentication. It is a required state
that comes before the STA may enter the association state

– Deauthentication
● This service voids an existing authentication

– Privacy
● A wireless station must be able to encrypt frames in order to protect

message content so that only the intended recipient can read it

– MAC Service Data Unit (MSDU) Delivery
● An MSDU is a data frame that must be transmitted to the proper

destination

Communication Protocols II
Wi-Fi – IEEE 802.11 Services

● Distribution System Services (DSS)

– Association
● This service establishes an AP/STA mapping after mutually

agreeable authentication has taken place between the two wireless
stations. A STA can only associate with one AP at a time. This
service is always initiated by the wireless station and when
successfully completed enables station access to the DSS.

– Reassociation
● This service moves a current association from one AP to another AP.

– Disassociation
● This service voids a current association

Communication Protocols II
Wi-Fi – IEEE 802.11 Services

– Distribution
● This service handles delivery of MSDUs within the distribution

system; i.e., the exchange of data frames between APs in an
extended service set (ESS).

– Integration
● This service handles delivery of MSDUs between the distribution

system and a wired LAN on the other side of a portal. Basically this
is the bridging function between wireless and wired networks

Communication Protocols II
Wi-Fi – State Variable

● Each wireless station maintains two state variables, one
for authentication and one for association.

● A wireless station is authenticated or unauthenticated.
● Once in an authenticated state, the STA is either

associated or unassociated.

● So possible states are

– State 1: Unauthenticated and unassociated.
– State 2: Authenticated, not associated.

– State 3: Authenticated and associated.

Communication Protocols II
Wi-Fi – Frames

● There are different types of IEEE 802.11 frames with
multiple subtypes

– Management
– Control

– Data

Communication Protocols II
Wi-Fi – Frames - Management

● 802.11 management frames make up a majority of the
frame types in a WLAN.

● Management frames are used by wireless stations to join
and leave the basic service set (BSS).

● Another name for an 802.11 management frame is
Management MAC Protocol Data Unit (MMPDU).

● Information fields are fixed-length fields in the body of a
management frame

● Information elements are variable in length

Communication Protocols II
Wi-Fi – Frames - Controls

● 802.11 control frames assist with the delivery of the data
frames

● Control frames are transmitted at one of the basic rates
● Control frames are also used to:

– Clear the channel
– Acquire the channel
– Provide unicast frame acknowledgments

● They contain only header information

Communication Protocols II
Wi-Fi – Frames - Data

● Most 802.11 data frames carry the actual data that is
passed down from the higher-layer protocols.

● The layer 3 – 7 MSDU payload is normally encrypted for
data privacy reasons.

● Some 802.11 data frames carry no MSDU payload at all
but do have a specific MAC control purpose within a BSS.

● Any data frames that do not carry an MSDU payload are
not encrypted because a layer 3 – 7 data payload does not
exist.

Communication Protocols II
Wi-Fi – Frames - Data

● The simple data frame has MSDU upper-layer information
encapsulated in the frame body.

● The integration service that resides in access points and
WLAN controllers takes the MSDU payload of a simple
data frame and transfers the MSDU into 802.3 Ethernet
frames.

● Null function frames are sometimes used by client
stations to inform the AP of changes in Power Save status.

Communication Protocols II
Wi-Fi – Security

● Service Set Identifier (SSID)

● Wired Equivalent Privacy (WEP)

● Wireless Protected Access (WPA)

● IEEE 802.11i

Communication Protocols II
Wi-Fi – Security

● Wired Equivalent Privacy (WEP),not that secure

● Wi-Fi Protected Access (WPA), a subset of the upcoming
802.11i security standard, will replace the flawed Wired
Equivalent Privacy (WEP).

● Without your SSID, people will not be able to join your
Wi-Fi hotspot.

Bluetooth

Communication Protocols II
Bluetooth – Introduction

● WPAN based on IEEE 802.15.1 Standard which no longer
maintained by IEEE

● The Bluetooth SIG (Special Interest Group) oversees
development of the specification, manages the
qualification program, and protects the trademarks

● It was originally conceived as a wireless alternative to RS-
232 data cables.

● Short distance communication using ISM band from 2.4 to
2.485 GHz

Communication Protocols II
Bluetooth – Introduction – Applications

Cable Replacements
● All modern accessories

like
• Keyboard
• Mouse
• Speakers
• Phones
get connected wirelessly

Communication Protocols II
Bluetooth – Introduction – Applications

Ad-hoc Networking
● The infotainment system in automotive application is good example

● Some example could be like
● File transfers between two phones/pcs
● And some we saw in the previous slides

Communication Protocols II
Bluetooth – Introduction – Applications

Access Point
● As the future belong to the IoT Bluetooth Special Interest Group showed off a

bunch of upcoming smart home products that will use the wireless standard with
● light bulbs
● home hubs
● tracking devices and more

Communication Protocols II
Bluetooth – Introduction - Class

Class Maximum Permitted Power
(Milli Watts)

Approximate Range
(Meter(s))

1 100 100

2 2.5 10

3 1 1

Communication Protocols II
Bluetooth – Introduction

● Uses frequency hoping spread spectrum (FHSS)

● Omni directional, no requiring line of sight

● Bluetooth offers data speeds of up to 1 Mbps up to 10
meters (Short range wireless radio technology)

● Unlike IrDA, Bluetooth supports a LAN-like mode where
multiple devices can interact with each other.

● The key limitations of Bluetooth are security and
interference with wireless LANs.

● Short range wireless radio technology

Communication Protocols II
Bluetooth – Topology – Point to point

● For establishing one-to-one (1:1) device
communications.

● The point-to-point topology available on
Bluetooth Basic Rate/Enhanced Data Rate
(BR/EDR) is optimized for audio streaming
and is ideally suited for a wide range of
wireless devices, such as speakers,
headsets, and hands-free car kits.

● In Bluetooth Low Energy (LE), it is
optimized for data transfer and is well
suited for connected device products,
such as fitness trackers, health monitors,
and PC peripherals and accessories.

Master

Slave

Communication Protocols II
Bluetooth – Topology – Broadcast

● For establishing one-to-many (1:m) device
communications.

● In Bluetooth LE, it is optimized for
localized information sharing and is ideal
for location services such as retail point-
of-interest information, indoor navigation
and way finding, as well as item and asset
tracking.

Master

Slave

```



  

Communication Protocols II
Bluetooth – Topology – Mesh

● For establishing many-to-many (m:m) 
device communications.

● In Bluetooth LE, it enables the creation of 
large-scale device networks and is ideally 
suited for control, monitoring, and 
automation systems where tens, 
hundreds, or thousands of devices need to 
reliably and securely communicate with 
one another. 

```

Master

Slave

Communication Protocols II
Bluetooth – Topology – Piconet

● Ad-hoc network of devices with one master which can
interconnect with up to seven active slave devices
forming total 8 devices per network

● Up to 255 further slave devices can be inactive, or
parked, which the master device can bring into active
status at any time.

Communication Protocols II
Bluetooth – Topology – Piconet

Parked Slave

Standby

Master

Active Slave

```

```

```



  

Communication Protocols II
Bluetooth – Topology – Scatter Net

● Interconnection of 2 or more piconets

● Interconnected piconets that supports communication 
between more than 8 devices.

● Scatternets can be formed when a member of one 
piconet (either the master or one of the slaves) elects to 
participate as a slave in a second, separate piconet

● The device participating in both piconets can relay data 
between members of both ad hoc networks

● However, the basic Bluetooth protocol does not support 
this relaying - the host software of each device would 
need to manage it



  

Communication Protocols II
Bluetooth – Topology – Point to be noted

● Devices can automatically locate each other

● Master controls and setup the network

● One master per Piconet

● A device can’t be masters for two piconets
● The slave of one piconet can be the master of another 

piconet
● All devices operate on the same channel and follow the 

same frequency hopping sequence
● Two or more piconet interconnected to form a scatter 

net



  

Communication Protocols II
Bluetooth – Topology – Point to be noted

● Devices participating in scatter net may act as gateway

● Salves notify the master before going to parked mode



  

Communication Protocols II
Bluetooth – Versions
● Bluetooth 1.0 & 1.0B – Non interoperable, Mandated BD_ADDR

● Bluetooth 1.1 - Ratified as IEEE standard 802.15.1-2002

● Bluetooth 1.2 - Faster connection and discovery

● Bluetooth 2.0 + EDR - Enhanced Data Rate

● Bluetooth 2.1 - Secure Simple Pairing - SSP

● Bluetooth 3.0 - High speed data transfer

● Bluetooth 4.0 + LE - Low Energy consumption

● Bluetooth 4.1 - Incremental software update to 4.0

● Bluetooth 4.2 - Introduces features for the IoT

● Bluetooth 5 – Focus on emerging IoT technologies



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

● Defines the requirements for a 
Bluetooth transceiver operating in the 
2.4 GHz ISM band

● Modulation is GFSK (Gaussian 
Frequency Shift Keying) with gross bit 
rate of 1Mbps

● 1600 hops/sec (625 μsec) frequency sec) frequency 
hopper

● 79 One MHz channels
● Time Division Duplex



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

● Addressing
● Channel Establishment

● Inquiry and Paging
● Attach and Detach

● Error detection and correction
● Synchrnous Connection Oriented (SCO) 

or Asynchrnous Connection Less (ACL)

Physical Layer



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

Addressing
● Bluetooth Device Address (BD_ADDR)

● 48 Bit IEEE MAC Address
● Active Member Address (AM_ADDR)

● 3 Bit Active Slave Address
● All 0s - Broadcast Address

● Parked Member Address (PM_ADDR)
● 8 Bit Parked Slave Address

● Access Request Addres (AR_ADDR)
● Used by the parked slave 

MAC Address
● Non-significant Address Part (NAP)

● Used for encryption seed
● Upper Address Part (UAP)

● Used for error correction seed 
initialization and frequency  hop 
sequence generation

● Lower Address Part (LAP)
● Used for FH sequence generation



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

Piconet Management
● Channel Control

● Managed by master
● Polling

● Master initiates the connection
● Master/Slave Switch

Link Config
● Low power modes
● Quality of Service (QoS)
● Packet Type Selection
Security
● Authentication
● Encryption



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

● Provides a command interface to the
Baseband Link Controller and Link 
Manager, and access to hardware status 
and control registers



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

L2CAP Layer
Service provider to the higher layer
●  Provides connection-oriented and 

connection less data services
● Protocol multiplexing and 

demultiplexing capabilities
● Segmentation & reassembly of large 

packets
● Provides data packets up to 64 kilobytes 

length



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

Radio Frequency Comm (RFCOM)
● Most important layer in the Bluetooth 

architecture.
● Takes care of the communication channel 

between two devices or between a 
master and a slave. It connects the serial 
ports of all the devices according to the 
requirement.

● Has to accommodate two kinds of 
devices:

● Communication end-points such as 
computers or printers.

● Devices that are a part of 
communication channel such as 
Modems.

● Emulation of Serial Port over wireless 
network

Middleware Protocol Group
● Additional transport protocols to allow 

existing and new applications to 
operate over Bluetooth.



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

Middleware Protocol Group
● Additional transport protocols to allow 

existing and new applications to 
operate over Bluetooth.

Service Discovery Protocol (SDP)
● Provides a means for applications to 

discover which services are available 
and to determine the characteristics of 
those available services

● Intended to address the unique 
characteristics of the Bluetooth 
environment.



  

Communication Protocols II
Bluetooth – Protocol Stack

RF (Radio and Antenna)

Baseband + Link Controller

LMP
(Link Manager Protocol)

HCI
(Host Controller Interface)

L2CAP
(Logical Link Control and Adaptation Protocol)

A
ud

io

Application

TCS SDP RFCOM

A
ud

io
D

at
a

D
at

a

C
on

tr
ol

Middleware Protocol Group
● Additional transport protocols to allow 

existing and new applications to 
operate over Bluetooth.

Telephony Control Protocol Spec (TCS)
Basic function of this layer is call control 
(setup & release) and group management 
for gateway serving multiple devices.



  

Communication Protocols II
Bluetooth – Specification

● Bluetooth® specifications define the technology building 
blocks that developers use to create the interoperable 
devices that make up the thriving Bluetooth ecosystem. 

● Bluetooth specifications are overseen by the Bluetooth 
Special Interest Group (SIG) and are regularly updated 
and enhanced by Bluetooth SIG Working Groups to meet 
evolving technology and market needs.

● Includes a profile document with a template to ensure a 
common structure



  

Communication Protocols II
Bluetooth – Profiles

● Can be seen as a wireless interface specification for 
communication between Bluetooth devices

● Describes the application-level usage models and their 
implementation, needed for interoperability reasons

– A Bluetooth headset from vendor X will work with a 
smartphone vendor Y

● Interoperability on different levels

– Radio:  Devices can get in contact with each other

– Protocol: Devices can communicate with each other

– Usage: Devices can execute applications together an meet 
end-users’ expectations



  

Communication Protocols II
Bluetooth – Profiles

AVRCP
(Audio / Video Remote Control Profile)

CIP
(Common ISDN Access Profile)

SDP
(Service Discovery Profile)

PAN
(Personal Area Network Profile)

HSP
(Headset Profile)

HFP
(Heads Free Profile)

DUN
(Dialup Networking Profile)

FAX
(Fax Profile)

LAN
(Local Area Network Profile)

CTP
(Cordless Telephony)

ICP
(Intercom)

HCRP
(Hardcopy Cable Replacement Profile)

A2DP
(Advanced Audio Distribution Profile) 

VDP
(Video Distribution Profile)

SAP
(SIM Access Profile)

OOP
(Object Push Profile)

SYNC
(Synchronization Profile)

BIP
(Basic Imaging Profile)

BPP
(Basic Printing Profile)

GAP
(Generic Access Profile) 

SPP
(Serial Port Profile) 

GOEP
(Generic Object Exchange Profile) 

GAVDP
(Generic Audio/Video Distribution Profile) 

TCS-BIN Based Profiles

FTP
(File Transfer Profile)



  

Communication Protocols II
Bluetooth – Profiles - GAP

● Basic profile – All other profiles are built upon it and use 
its facilities

● Ensures that all devices can successfully establish a 
baseband link

– Minimum conformance requirement for devices

– Generic Procedures for Discovering devices
– Link Management Facilities for connection to devices
– Naming Conventions

– Modes of Operation



  

Communication Protocols II
Bluetooth – Profiles – GAP - Mode(s)

● Discovery

– Governs the use of inquiry scan and whether other devices 
can discover a Bluetooth device when it comes within their 
area of radio coverage.

● Non-Discoverable
● Limited-Discoverable
● General-Discoverable



  

Communication Protocols II
Bluetooth – Profiles – GAP - Mode(s)

● Connection

– Governs the use of page scan and whether other devices 
can connect to a Bluetooth device when it comes within 
their area of radio coverage

● Non-Connectable
● Direct-Connectable
● Undirect-Connectable



  

Communication Protocols II
Bluetooth – Profiles – GAP - Mode(s)

● Security

– Mode 1
● Level 1 - No Security (No authentication and no encryption)
● Level 2 - Unauthenticated pairing with encryption
● Level 3 - Authenticated pairing with encryption
● Level 4 - Authenticated LE Secure Connections pairing with 

encryption
– Mode 2

● Level 1 - Unauthenticated pairing with data signing
● Level 2 - Authenticated pairing with data signing



  

Communication Protocols II
Bluetooth – Profiles – GAP - Mode(s)

● Pairing

– Governs the use of the link manager’s pairing facilities, 
which are used to create link keys for use on encrypted 
links

● Non-Bondable
● Bondable

– A pairing procedure involves an exchange of Security Manager 
Protocol packets to generate a temporary encryption key called 
the Short Term Key (STK)



  

Communication Protocols II
Bluetooth – Profiles - GATT

BR / EDR Radio BR / EDR + LE Radio LE Radio

Link Controller Link Controller

Link Manager Link Layer

L2CAP L2CAP L2CAP

ATT
(Attribute Protocol)

SM
(Security Management)

SM

GATT
(Generic Attribute Profile)

Generic Access Profile Generic Access Profile Generic Access Profile

BR / EDR Profile

Link Manager

BD/EDR Protocol
BD/EDR
Protocol

BR / EDR Profile LE Profile

Link Layer

ATT

GATT

LE Profile

Host Control Interface

Single Mode BR / EDR 
Stack

Dual Mode Stack Single Mode LE
Stack



  

Communication Protocols II
Bluetooth – Profiles – GATT Server

GATT Server

Service 1

Characteristic

Declaration

Value

Characteristic

Declaration

Value

Service 2

Characteristic

Declaration

Value

Characteristic

Declaration

Value



  

Thank You



  

Communication Protocols II
References

● An Introduction® to Wi-Fi – Rabbit Product Manual

● https://dot11ap.wordpress.com/802-11-frame-format-an
d-types/

● http://microchipdeveloper.com/wireless:ble-gap-modes-
procedures



  

Communication Protocols II
Differences

https://dot11ap.wordpress.com/802-11-frame-format-and-types/
https://dot11ap.wordpress.com/802-11-frame-format-and-types/
http://microchipdeveloper.com/wireless:ble-gap-modes-procedures
http://microchipdeveloper.com/wireless:ble-gap-modes-procedures


  

Communication Protocols II
Differences


