
Developing a Complete Embedded IoT Solution Using

Mongoose OS

Mubeen Jukaku
and

Syed Adil
Emertxe, Bangalore

IoT Architecture

IoT - Definition

Source: Gartner

“The network of physical objects that contain
embedded technology to communicate
and interact with their internal states

or the external environment.”

IoT – Reference Architecture

Use Case

Lockers

●Somethings to ponder on

–Is my bank locker safe?

–Is it possible that lockers are accessed without our knowledge?

●Is it possible so how we come to know about it?

Smart Lockers

Smart Lockers

Device

Device

Device Device

Smart Lockers

Device

Device

Device Device
Access
Point

Smart Lockers

Device

Device

Device Device
Access
Point

Smart Lockers
Device

Access
Point

Smart Lockers
Device

Access
Point

Node

State : Open

State : Open

State : Open

State : ON

Brightness: 80%
Mode : Auto

Smart Lockers - Actors

●Customers :-

–Every time the locker is opened the user gets an SMS / E-Mail

●Control Room :-

–Based on the access time the control room gets the SOS to take appropriate access

●Insurance Providers :-

–Upon subscribing to the required nodes the insurance providers get the intimation of
theft or closure of the locker facility

IoT Hardware / Software Selection

●Security requirements

●Ease of development

●Data acquisition, processing and storage requirements

●Connectivity requirements

●Power requirements

●Physical device design

●Cost requirements

NodeMCU ESP32

NodeMCU ESP32 - Architecture

GPIOs

USB
Interface

LED

SWITCH

ESP32

●Espressif Systems

●32 Bit Core

●520 Kbyte SRAM
●Ultra Low Pwr SOC

BLE Wi-Fi

NodeMCU ESP32 - Peripherals

ESP32 Module

1

1

3

Power LED3

4

Serial-USB Converter Chip
4

USB Interface

2

2

5

Reset Key5

6

Boot Key6

7

User LED7

8

GPIOs8

NodeMCU ESP32 – Development Support

Arduino

Espressif IoT Development Framework

NodeMCU Lua

Mongoose OS

MicroPython, etc.,

Introduction to Mongoose OS

Introduction to Mongoose OS (MOS)

●An Open source OS for IoT

●Started as embedded web server. Expanded to an IoT OS

●Dual License, GPL or Commercial

●Development in C / C++ / JS

●Tool chain support on Windows, Linux, MacOS

MOS – Supported MCUs

●STMicro : STM32 F4, L4, F7

●TI : CC3200, CC3220

●Espressif : ESP32, ESP8266

MOS – IoT Cloud Integration

●Amazon AWS IoT

●Microsoft Azure IoT

●Google IoT Core

●IBM Watson IoT

●Private MQTT / Rest Backends

Device Logic (Application Code)

Mongoose OS Core
Timers, Events, etc.,

Mongoose OS Libraries
Network, Cloud Support, Drivers, RPC, OTA, etc.,

Native SDK
e.g, STM32 Cube, TI SDK, ESP-IDF, etc.,

STM32 L4, F4, F7 TI CC 3220, 3200 ESP32, ESP8266

Native OTA Support
Remote Management

TLS1.2, Mutual TLS
HTTP, MQTT, Websoket, CoAP

Wifi, Ethernet, BLE

Firmware code can use
Any functionality from

The native SDK

MOS – Architecture

AWS / Azure / Google etc.,
(Cloud Backend)

MOS – Development Setup

MOS – Development Setup

●Download and Install MOS

●Understanding MOS User Interface

●Application (Blinky)

●mos.yml

●Building the firmware

●Flashing the firmware

●The output

MOS – Download

MOS – Application

mos clone https://github.com/mongoose-os-apps/demo-js app1

MOS – Application - Blinky

mos build

mos flash

AWS Overview

AWS

●Amazon Web Services

●Secure cloud services platform

●Offers to

–Compute power

–Database storage

–Content delivery

–and other functionality to help businesses scale and grow

AWS – Why?

AWS – Why?

AWS - Features

●A Platform for Virtually Every Use Case

●Deep Features and getting deeper by the day

●Security Recognized as Stronger than On-premises

●Deep Visibility into Compliance and Governance

AWS - Reason to Choose

●Flexible, Scalable and Reliable

●Good Pricing, and interesting free tiers!

●Good presence, with atleast 25 geographic locations

●Customization

●Security

●and many more ...

AWS – Major Services

Compute Storage & Content Delivery

Database

Networking Administration & Security

Analytics Internet of AWS Overviews

Application Services Deployment & Management

MQTT Overview

MQTT – What?

●Machine-to-Machine(M2M) and IoT connectivity protocol

●Lightweight messaging protocol which works with a server-

based publish subscribe mechanism

●Runs on the top of TCP/IP protocol suite

●Lighter than HTTP 1.1 and HTTP/2 protocols

●Popular among IoT, M2M, Embedded Projects

MQTT – How?

Broker
(Gateway)

Thing1
(Station)

Thing2
(Station)

Thing3
(Station)

Publish

MQTT – Why?

●One-to-many distribution

●Ideal for constrained networks

●Supports QoS (3 Levels)

●For lower footprint and low power devices

●Simple implementation with set of commands to CONNECT,

PUBLISH, SUBSCRIBE and DISCONNECT.

●Supports “Will” on abnormal disconnection

Use Case Implementation

End to end IoT solution using Mongoose OS
Device

Access
Point

Node

Router

Mongoose OS + AWS IoT Core: Steps

●Create an AWS Account / User

●Install AWS CLI and Setup credentials

●Setup NODEMCU device for AWS using mos

●Build an app using AWS IoT and AWS services

Application Architecture

Rules Engine

Invoke Rule

Trigger SNS

AWS SNS

Send Email

MQTT

IoT Device Gateway

End to end IoT solution using Mongoose OS

R1R2

AD1_C0

GND

3.3V

V
I
N

G
N
D

D
1
3

D
1
2

D
1
4

D
2
7

D
2
6

D
2
5

D
3
3

D
3
2

D
3
5

D
3
4

V
N

V
P

E
N

D
1
5

D
2

D
4

R
X
2

T
X
2

D
5

D
1
8

D
1
9

D
2
1

R
X
0

T
X
0

D
2
2

3
V
3

G
N
D

D
2
3

E
N B
O
O
T

PIR

Smart Lockers - Summary
Device

Access
Point

Node

State : Open

State : Open

State : Open

State : ON

Brightness: 80%
Mode : Auto

Thank You

