
DevelopersInsight

how pointer to constant works:

  1 #include <stdio.h> 

  2 

  3 int main() 

  4 { 

  5         //Definition of the variable 

  6         int a = 10; 

  7 

  8         //Definition of pointer to constant 

  9         const int* ptr = &a; //Now, ptr is pointing to   

 the value of the variable ‘a’ 

 10 

 11         *ptr = 30; //Error: Since the value is constant 

 12 

 13         return 0; 

 14   }

Pointers have always been a complex topic to understand 
for those new to C programming. There will be more 
confusion for newbies when these terms are used along 

with some qualifiers like const in C programming. In this article, 
I will focus on the difference between the ‘pointers to constant’ 
and ‘constant pointers’ in order to make the concepts very clear.

 Note: The code snippets provided here have been 
tested with the GCC compiler [gcc version 4.8.2] running 
under the Linux environment.

Pointer to constant
As the name itself indicates, the value of the variable to which 
the pointer is pointing, is constant. In other words, a pointer 
through which one cannot change the value of the variable to 
which it points is known as a pointer to constant.

 Note : These pointers can change the address they point to 
but cannot change the value at the address they are pointing to.

Illustration 1
Let us consider the code snippet given below to understand 

Aimed at those new to C programming, this article clears up the confusion between the 
terms used in it, with illustrative examples.

Constant Pointers and Pointers to Constant  
A Subtle Difference in C Programming

Table 1: Syntax to declare the pointer to constant

Syntax Example

const <type of pointer>*<pointer name> const int*ptr

OR

<type of pointer>const*<pointer name> int const*ptr

PB | decemBeR 2014 | OPeN SOURce FOR YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPeN SOURce FOR YOU | decemBeR 2014 | 39



Developers Insight

 Note: However, these pointers can change the value 
of the variable they ‘point to’ but cannot change the address 
they are ‘holding’.

Illustration 3
Let us consider the following code snippet to understand 
how‘constant pointer’ works:
  1 #include <stdio.h> 

  2 

  3 int main() 

  4 { 

  5         //Definition of the variable 

  6         int a = 10; 

  7         int b = 20; 

  8 

  9         //Definition of pointer to constant 

 10         const int* ptr = &a;//Now, ptr is pointing to the 

value of the variable ‘a’ 

 11 

 12         *ptr = 30; // Works,since the pointer pointing to 

Table 3: Showing how to declare ‘constant pointer’

Syntax Example

<type of pointer>*const <pointer name> int*const ptr

Table 2: Pointer to constant concept

Pointer to 
constant

Value change Address 
change

Const int*ptr; Not possible Possible

In the above code, in Line No. 11, we are trying to 
change the value of the variable to which the pointer is 
‘pointing to’, but this is not possible since the value is 
constant. When the above code is compiled and run, we get 
the output shown in Figure 1.

Illustration 2
Now, let’s use the same example given in Illustration 1 to show 
that the ‘address’ that the pointer contains is not a constant.

  

1 #include <stdio.h> 

  2 

  3 int main() 

  4 { 

  5         //Definition of the variables 

  6         int a = 10; 

  7         int b = 20; 

  8 

  9         //Definition of pointer to constant 

 10         const int* ptr = &a; //Now, ptr is pointing to   

   the value of the variable ‘a’ 

 11 

 12        ptr = &b;  // Works: Since pointer is not constant

 13 

 14         return 0; 

 16   } 

From Illustrations 1 and 2, one can understand that the 
‘address’ that the pointer contains can be changed but not 
the value to which the pointer is ‘pointing to’. This can be 
clearly understood by the pictorial representations given in 
Figures 2, 3 and 4.

Constant pointers
A‘constant pointer’ is one that cannot change the address it 
contains. In other words, we can say that once a constant pointer 
points to a variable, it cannot point to any other variable. 

Figure 1: Output of the code snippet given in Illustration 1

a

ptr

10
b

20
xxxx

xxxx
zzzz

yyyy

a

ptr

NOT OK

30
b

20
xxxx

xxxx
zzzz

yyyy

Figure 2: Pictorial representation of 
‘pointer to constant’

Figure 3: Output of the code snippet 
given in Illustration 3

a

ptr

OK

10
b

20
xxxx

xxxx
zzzz

yyyy

Figure 4: Pictorial representation of ‘constant pointer’

Table 5: Summary

Example Value constant Pointer constant

char*ptr No No

const char*ptr Yes No

char const*ptr Yes No

char*const ptr No Yes

const char*const ptr Yes Yes

Table 4: Constant pointer concept

Pointer to 
constant

Value change Address 
change

int*const ptr; Possible Not possible

40 | decemBeR 2014 | OPeN SOURce FOR YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPeN SOURce FOR YOU | decemBeR 2014 | 41



DevelopersInsight

By: Satyanarayana Sampangi

The author is a member - Embedded software at Emertxe 
Information Technologies (http://www.emertxe.com). His area of 
interest lies in embedded C programming combined with data 
structures and microcontrollers. He likes to experiment with C 
programming and open source tools in his spare time to explore 
new horizons. He can be reached at satya@emertxe.com

Figure 5: Output of the code snippet shown in Illustration 3

Table 6: Summary without asterisk

Example Part Before 
Asterisk

Part After 
Asterisk

Comments

const char*ptr const ptr Const is associated with data type, so value is constant

char const*ptr char const ptr Const is associated with data type, so value is constant

char*const ptr char const ptr Const is associated with pointer, so pointer is constant

const char*const ptr const char const ptr Const is associated with both data type & pointer so both are constant 

the value is not constant 

 13 

 14         ptr = &b; //

Error:Now, ptr is pointing to 

the value of the variable ‘b’ 

 15 

 16         return 0; 

 17  

 18 }

From the above example 
(Illustration 3), it is clear that 

in Line No 14 we tried to change the address of the pointer 
ptr to some other variable, but it is not possible. The output 
of the code snippet shown in Illustration 3 is given in Figure 
5. Similarly, one can observe that in Line No 12, we are 
trying to change the value of the variable it is ‘pointing to’, 
which is possible.

This can be clearly understood by the pictorial 
representations given in Figures 6, 7 and 8. 

Something to think about

Can we have both pointer to constant and constant pointer 
in a single statement?

Usage
We can find ‘n’ number of uses of these concepts in C 
as well  as in the embedded C programming world. One 

such simple use of ‘pointer to constant’ is to find the string 
length of the given string without any attempt to modify the 
original string as shown in Example 1 (Figure 9). Example 
2 gives an idea of using ‘pointer to constant’ in the strcmp() 
function (Figure 10).

A trick
There is a small trick to understand the difference between 
‘pointer to constant’ and ‘constant pointers’ which is shown 
in Table 6.

 Note: This trick is for all those new to the C 
programming world, who are confused with constant 
and pointers.

From the summary shown in Table 5, separate the part 
before asterisk(*) and the part after the asterisk(*) as given 
in Table 6, to clearly understand whether ‘data’ is constant 
or ‘pointer’ is constant. 

a

ptr

10
b

20
xxxx

xxxx
zzzz

Fig 6: int* const ptr=&a;

yyyy

a

ptr

OK

30
b

20
xxxx

Fig 7: int* const ptr=&a;
 *ptr=30; //works

xxxx
zzzz

yyyy

Figure 6: Pictorial representation of 
constant pointer usage

Figure 7: Pictorial representation show-
ing value contained in the variable can 
be changed through the constant pointer

a

ptr
NOT OK

10
b

20
xxxx

Fig 8: int* const ptr=&a;

yyyy
zzzz

yyyy

ptr=&b; //Error, Since address is constant

Figure 8: Pictorial representation 
showing constant pointer value can-
not be changed

Figure 9: Shows the usage of pointer to constant in strlen() library function

Figure 10: Shows the usage of pointer to constant in strcmp() library function

40 | decemBeR 2014 | OPeN SOURce FOR YOU | www.OpenSourceForU.com www.OpenSourceForU.com | OPeN SOURce FOR YOU | decemBeR 2014 | 41

http://www.emertxe.com/
mailto:satya@emertxe.com

