
Open GurusLet's Try

Applications and Framework

Binder IPC

Android System Services

HAL

Linux Kernel

System ServicesMedia Services

AudioFlinger

Camera
Service

MediaPlayer
Service

Other Media
Services

Search Service

Activity
Manager

Window
Manager

Camera HAL Audio HAL Graphics HAL Other HALs

Camera Driver
Audio Driver
(ALSA, OSS,

etc)
Display Drivers

 � Application framework: Applications written in Java
directly interact with this layer.

 � Binder IPC: It is an Android-specific IPC mechanism.
 � Android system services: To access the underlying

hardware application framework, APIs often communicate
via system services.

 � HAL: This acts as a glue between the Android system and
the underlying device drivers.

 � Linux kernel: At the bottom of the stack is a Linux kernel,
with some architectural changes/additions including
binder, ashmem, pmem, logger, wavelocks, different out-
of-memory (OOM) handling, etc.
In this article, I describe how to compile the kernel for the

Samsung Galaxy Star Duos
(GT-S5282) with Android
version 4.1.2. The build
process was performed on
an Intel i5 core processor
running 64-bit Ubuntu Linux
14.04 LTS (Trusty Tahr).
However, the process should
work with any Android
kernel and device, with minor
modifications. The handset
details are shown in the
screenshot (Figure 2) taken
from the Setting ->About
device menu of the phone.

Many of us are curious and eager to learn how to
port or flash a new version of Android to our
phones and tablets. This article is the first step

towards creating your own custom Android system. Here,
you will learn to set up the build environment for the
Android kernel and build it on Linux.

Let us start by understanding what Android is. Is it an
application framework or is it an operating system? It can be
called a mobile operating system based on the Linux kernel,
for the sake of simplicity, but it is much more than that. It
consists of the operating system, middleware, and application
software that originated from a group of companies led by
Google, known as the Open Handset Alliance.

Android system architecture
Before we begin building an Android platform, let’s
understand how it works at a higher level. Figure 1 illustrates
how Android works at the system level.

We will not get into the finer details of the architecture in
this article since the primary goal is to build the kernel. Here
is a quick summary of what the architecture comprises.

Tired of stock ROMs? Build and flash your own version
of Android on your smartphone. This new series of
articles will see you through from compiling your
kernel to flashing it on your phone.

Building the Android Platform:
Compile the Kernel

Figure 1: Android system architecture

Other System
Services and

Managers

Other Drivers

Figure 2: Handset details for GT-S5282

PB | August 2014 | OPEN sOuRCE FOR YOu | www.OpensourceForu.com www.OpensourceForu.com | OPEN sOuRCE FOR YOu | August 2014 | 85

Open Gurus Let's Try

System and software requirements
Before you download and build the Android kernel, ensure
that your system meets the following requirements:
 � Linux system (Linux running on a virtual machine will

also work but is not recommended). Steps explained
in this article are for Ubuntu 14.04 LTS to be specific.
Other distributions should also work.

 � Around 5 GB of free space to install the dependent
software and build the kernel.

 � Pre-built tool-chain.
 � Dependent software should include GNU Make,

libncurses5-dev, etc.
 � Android kernel source (as mentioned earlier, this

article describes the steps for the Samsung Galaxy Star
kernel).

 � Optionally, if you are planning to compile the whole
Android platform (not just the kernel), a 64-bit
system is required for Gingerbread (2.3.x) and newer
versions.
It is assumed that the reader is familiar with Linux

commands and the shell. Commands and file names are
case sensitive. Bash shell is used to execute the commands
in this article.

Step 1: Getting the source code
The Android Open Source Project (AOSP) maintains
the complete Android software stack, which includes
everything except for the Linux kernel. The Android
Linux kernel is developed upstream and also by various
handset manufacturers.

The kernel source can be obtained from:
1. Google Android kernel sources: Visit https://source.

android.com/source/building-kernels.html for details.
The kernel for a select set of devices is available here.

2. From the handset manufacturers or OEM website: I
am listing a few links to the developer sites where you
can find the kernel sources. Please understand that the
links may change in the future.

 � Samsung: http://opensource.samsung.com/
 � HTC: https://www.htcdev.com/
 � Sony: Most of the kernel is available on github.

3. Developers: They provide a non-official kernel.
This article will use the second method—we will get

the official Android kernel for Samsung Galaxy Star (GT-
S5282). Go to the URL http://opensource.samsung.com/
and search for GT-S5282. Download the file GT-S5282_
SEA_JB_Opensource.zip (184 MB).

Let’s assume that the file is downloaded in the ~/
Downloads/kernel directory.

Step 2: Extract the kernel source code
Let us create a directory ‘android’ to store all relevant
files in the user's home directory. The kernel and Android
NDK will be stored in the kernel and ndk directories,

respectively.

$ mkdir ~/android

$ mkdir ~/android/kernel

$ mkdir ~/android/ndk

Now extract the archive:

$ cd ~/Downloads/kernel

$ unzip GT-S5282_SEA_JB_Opensource.zip

$ tar -C ~/android/kernel -zxf Kernel.tar.gz

The unzip command will extract the zip archive,
which contains the following files:
 � Kernel.tar.gz: The kernel to be compiled.
 � Platform.tar.gz: Android platform files.
 � README_Kernel.txt: Readme for kernel compilation.
 � README_Platform.txt: Readme for Android platform

compilation.
If the unzip command is not installed, you can extract

the files using any other file extraction tool.
By running the tar command, we are extracting the

kernel source to ~/android/kernel. While creating a sub-
directory for extracting is recommended, let’s avoid it
here for the sake of simplicity.

Step 3: Install and set up the toolchain
There are several ways to install the toolchain. We will
use the Android NDK to compile the kernel.

Please visit https://developer.android.com/tools/sdk/
ndk/index.html to get details about NDK.

For 64-bit Linux, download Android NDK android-
ndk-r9-linux-x86_64-legacy-toolchains.tar.bz2 from
http://dl.google.com/android/ndk/android-ndk-r9-linux-
x86_64-legacy-toolchains.tar.bz2

Ensure that the file is saved in the ~/android/ndk
directory.

 Note: To be specific, we need the GCC 4.4.3
version to compile the downloaded kernel. Using
the latest version of Android NDK will yield to
compilation errors.

Extract the NDK to ~/android/ndk:

$ cd ~/android/ndk

For 64 bit version

$ tar -jxf android-ndk-r9-linux-x86_64-legacy-

toolchains.tar.bz2

Add the toolchain path to the PATH environment
variable in .bashrc or the equivalent:

86 | August 2014 | OPEN sOuRCE FOR YOu | www.OpensourceForu.com www.OpensourceForu.com | OPEN sOuRCE FOR YOu | August 2014 | 87

Open GurusLet's Try

#Set the path for Android build env (64 bit)

export PATH=${HOME}/android/ndk/android-ndk-r9/toolchains/

arm-linux-androideabi-4.4.3/prebuilt/linux-x86_64/

bin:$PATH

Step 4: Configure the Android kernel
Install the necessary dependencies, as follows:

$ sudo apt-get install libncurses5-dev build-essential

Set up the architecture and cross compiler, as follows:

$ export ARCH=arm

$ export CROSS_COMPILE=arm-linux-androideabi-

The kernel Makefile refers to the above variables
to select the architecture and cross compile. The cross
compiler command will be ${CROSS_COMPILE}gcc
which is expanded to arm-linux-androideabi-gcc. The same
applies for other tools like g++, as, objdump, gdb, etc.

Configure the kernel for the device:

$ cd ~/android/kernel

$ make mint-vlx-rev03_defconfig

The device-specific configuration files for ARM
architecture are available in the arch/arm/configs directory.

Executing the configuration command may throw a
few warnings. You can ignore these warnings now. The
command will create a .config file, which contains the
kernel configuration for the device.

To view and edit the kernel configuration, run the
following command:

$ make menuconfig

Next, let’s assume you want to change lcd overlay
support.

Navigate to Drivers → Graphics → Support for
framebuffer devices. The option to support lcd overlay
should be displayed as shown in Figure 3.

Skip the menuconfig step or do not make any changes if

you are unsure.

Step 5: Build the kernel
Finally, we are ready to fire the build. Run the make
command, as follows:

$ make zImage

If you want to speed up the build, specify the -j option to
the make command. For example, if you have four processor
cores, you can specify the -j4 option to make:

$ make -j4 zImage

The compilation process will take time to complete, based
on the options available in the kernel configuration (.config)
and the performance of the build system. On completion, the
kernel image (zImage) will be generated in the arch/arm/boot/
directory of the kernel source.

Compile the modules:

$ make modules

This will trigger the build for kernel modules, and .ko files
should be generated in the corresponding module directories.
Run the find command to get a list of .ko files in the kernel
directory:

$ find . -name “*.ko”

What next?
Now that you have set up the Android build environment,
and compiled an Android kernel and necessary modules,
how do you flash it to the handset so that you can see the
kernel working? This requires the handset to be rooted first,
followed by flashing the kernel and related software. It turns
out that there are many new concepts to understand before
we get into this. So be sure to follow the next article on
rooting and flashing your custom Android kernel.

By: Mubeen Jukaku

Mubeen is technology head at Emertxe Information Technologies
(http://www.emertxe.com). His area of expertise is the architecture
and design of Linux-based embedded systems. He has vast
experience in kernel internals, device drivers and application porting,
and is passionate about leveraging the power of open source for
building innovative products and solutions. He can be reached at
mubeenj@emertxe.com

https://source.android.com/
https://developer.android.com/
http://xda-university.com

References

Figure 3: Kernel configuration – making changes

86 | August 2014 | OPEN sOuRCE FOR YOu | www.OpensourceForu.com www.OpensourceForu.com | OPEN sOuRCE FOR YOu | August 2014 | 87

