
Developers Insight

Let’s now look at three different cases that give rise to
dangling pointers.

Case 1: When a function returns the address of
the auto variables
Consider the simple code snippet given below (Code 1):

 1 #include <stdio.h>

 2

 3 int *fun(void);

 4

 5 int main()

 6 {

 7 int *int_ptr = fun();

 8 printf(“The value at address %p : %d\n”, int_ptr, 	

	 *int_ptr);

Dangling pointers are those in the C programming
language that do not point to valid objects. Pointers
are like sharp knives that have tremendous power

in C programming. When used properly, they reduce the
complexity of the programs to a great extent. But when not
used properly, they result in adverse effects and, in the worst
case scenario, may crash the system.

In this article, I mainly focus on dangling pointers and
what causes them by looking at several different situations
in which they occur. I also suggest simple methods to
avoid them.

 Note: Code snippets provided here are tested with the
GCC compiler [gcc version 4.7.3] running under the Linux
environment.

This article takes off from an earlier one on constant pointers. Here, the focus is on dangling
pointers—how they occur and how to prevent them. The article is a great guide for C newbies.

Dangling Pointers
Avoid them Strictly!

50  |  March 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  March 2015  |  51

DevelopersInsight

 9 return 0;

 10 }

 11

 12 int *fun(void)

 13 {

 14 int auto_var = 10;

 15 return (&auto_var);

 16 }

When we run the program shown in Code 1 in the GCC
compiler, we get the warning shown in Figure 1.

What is wrong when the address of the auto/local
variables is returned? Let us examine this in detail:
1.	 We know that whenever there is a function call, a new

stack frame will be created automatically, where auto
variable auto_var is local in our example. Its scope and
lifetime is within the function call.

2.	 When the control returns from the function call, all the
memory allocated for that function will be freed automatically.

3.	 In our example program, we are returning the address of
the auto variable and collecting this in the int_ptr pointer
in the main function. So, int_ptr is still pointing to the
memory, which is freed as mentioned in Point 2.

4.	 One can observe allocation and deallocation of the stack
frame (let us called this fun frame) for the fun() in Figure
2 for better understanding.

5.	 Now, int_ptr becomes a dangling pointer. Dereferencing
this pointer results in unexpected output.

6.	 So, always take extra care while playing with pointers and
local variables.
Any attempt to dereference the pointer that is already

dangling may still print the correct value after the control

returning from a function call, but
any functions called thereafter will
overwrite the stack storage allocated
for the auto_var variable with other
values, and the pointer will no longer
work correctly.

How to prevent a pointer from
becoming a dangling pointer in this case: If a pointer to
auto_var is to be returned, auto_var must have scope beyond
the function so that it may be declared as static in order to
avoid the pointer from dangling. This is because the memory
allocated to the static variables is from the data segment,
where the lifetime will be throughout the program.

Case 2: When the variable goes out of scope
Consider the sample code (Code 2) given below for analysis:

 1 #include <stdio.h>

 2

 3 int main()

 4 {

 5 int *iptr;

 6 //Block started

 7 {

 8 int var = 10;

 9 iptr = &var;

 10 } //After this block iptr is dangling

 11 //Some code goes here

 12 return 0;

 13 }

Running the program shown in Code 2 in the GCC compiler
with the -Wall option results in the warning shown in Figure 3.

Since the variable var is invisible for the outer block
shown in Code 2, iptr is still pointing to the same object even
when the control comes out of the inner block. Hence, the
pointer iptr becomes a dangling pointer after Line 10 in the
example shown in Code 2.

Case 3: When, in dynamic memory allocation,
the block of memory that is already freed is used
Consider the sample code given below:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4

5 int main()

6 {

7 int *block_ptr = (int *) malloc(sizeof(int));

8

9 //Do something with allocated memory

10

11 free(block_ptr);

Figure 1: Compiler generating warning

Figure 2: Program memory and stack frames

50  |  March 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  March 2015  |  51

Developers Insight

12

13 //Some statements

14

15 *block_ptr = 20;

16 //Pointer becomes dangling, since the memory

17 //block to which it is pointing is already freed

18

19 return 0;

20 }

In the code snippet shown above,
Line 5: Memory allocation by malloc().
Line 9: Memory allocated is freed by free() manually.
Line 13: Reusing the pointer, which is still pointing to the

memory that is already freed. In our example, block_ptr is
now the dangling pointer.

 Note: In Case 1: Memory is freed automatically.
In Case 3: Memory is freed manually. This is one of the
key differences between stack and heap.

In the C programming language, deleting an object from
memory explicitly or by destroying the stack frame on the
return of the control does not alter associated pointers as seen
in Case 1 and Case 3. The pointer still points to the same
location in memory, even though the reference has since been
deleted and may now be used for other purposes.

Solution for the problem in Case 3: In Case 3, the

dangling pointer can be avoided by initialising it to
NULL immediately after freeing it, if the OS is capable of
detecting the runtime references as shown below:

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main()

5 {

6 int *block_ptr = (int *) malloc(sizeof(int));

7

8 //Do something with allocated memory

9 free(block_ptr);

10 //Initialising the block pointer to NULL

11 block_ptr = NULL;

12 //Now, block_ptr is no more dangling

13 //Some statements

14

15 *block_ptr = 20;

16 //Error: Dereferencing the NULL pointer, gives

segmentation fault

17 return 0;

18 }

Dangling pointers are very harmful and have adverse
effects in embedded systems programming. So, they should
be strictly avoided.

By: Satyanarayana Sampangi

The author is a member of the embedded software team at
Emertxe Information Technology (P) Ltd (http://www.emertxe.com).
His areas of interest are embedded C programming combined
with data structures and microcontrollers. He can be reached at
satya@emertxe.com

Figure 3: Compiler generating warning

www.electronicsb2b.com

Log on to www.electronicsb2b.com and be in touch with the Electronics B2B Fraternity 24x7

Read more stories on Security in

• CCTV camera market is expected to double by 2015

• The latest in biometric devices

• CCTV Camera manufacturers can look forward to a bright future

• Video Analytics Systems Turning a CCTV into a proactive tool

• Security cameras evolving with new technologies

• The latest in dome cameras

• The latest in weather-proof and vandal-resistant security cameras

TOPSECURITY STORIES ELECTRONICS

INDUSTRY IS AT A

52  |  March 2015  |  OPEN SOURCE For You  |  www.OpenSourceForU.com www.OpenSourceForU.com  |  OPEN SOURCE For You  |  March 2015  |  PB

